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1. INTRODUCTION

The concept of valence and core electrons is familiar to every
chemist and underlying, for example, the ordering of the
elements in the periodic table. For many qualitative considera-
tions the chemistry of an element is only determined by its
valence electrons, which actively participate in chemical bonding.
In this picture the core electrons remain essentially inert and at
most play an indirect role, for example, by providing together
with the nucleus somewhat modified effective potentials for the
valence electrons of the elements within a group of the periodic
table. These do not only lead to quantitative differences for
atoms, for example, in ionization potentials, electron affinities
and excitation energies, but also for molecules, for example, the
strengths of the chemical bonds formed by these atoms, and thus
affect their chemical behavior.

The method of effective core potentials (ECPs) makes use of
these ideas in first-principles electronic structure theory calcula-
tions. The main goals are a considerable reduction of the
computational effort by avoiding the costly explicit treatment
of the atomic cores in the calculations and at the same time an
implicit treatment of the major relativistic effects for the valence

electron system. The elimination of the atomic cores from the
calculations allows to treat all elements of a group of the
periodic table on equal footing. Since the same number of
valence electrons has to be dealt with, one can expect that the
same computational effort is required for all elements of a
column of the periodic table and one may also hope that a
similar accuracy is achieved, that is, a bias in the quality of the
results caused by largely different system sizes is avoided.
Clearly, such an expectation rests on the discussible assumption
that the ECP formalism works equally well for all elements of a
group of the periodic table.

Relativistic contributions, which become non-negligible quan-
titatively and sometimes even qualitatively for heavy elements
and thus cannot be neglected for accurate investigations, require
an additional computational effort at the all-electron (AE) level.
Within ECP approaches they are included usually by means of a
simple parametrization of a suitably chosen valence-only (VO)
model Hamiltonian with respect to relativistic AE reference data.
If spin—orbit (SO) effects can be neglected the scalar-relativistic
ECP approaches can make use of the whole unchanged machin-
ery of nonrelativistic quantum chemistry, nevertheless leading to
results comparable to those of more costly scalar-relativistic AE
calculations. SO effects can be accounted for in ECP approaches
using various strategies, which range from a simple perturbative
treatment subsequent to scalar-relativistic calculations, that is, as
the last step of the calculation, to their rigorous variational
inclusion already from the beginning of the calculation. Since
for most investigations targeting chemical problems the results
obtained with modern ECP schemes are usually not less accurate
than those derived from more costly, but also approximate
relativistic AE calculations, it is not too surprising that ECPs
became a workhorse of relativistic quantum chemistry and
produced more results than any other relativistic method."”

The present article intends to describe the most important
aspects of the theoretical background of ECPs. The two main
branches of the method will be discussed, that is, the pseudopo-
tential (PP) and the model potential (MP) approach. During the
long history of ECPs many schemes were proposed and devel-
oped, which cannot all be discussed in detail here. Thus, we
emphasize only those modern variants of the PP and MP
approaches, which experience a widespread use today. When
doing this we mainly focus on schemes applied to chemical
problems, that is, molecules, using Gaussian basis sets and only
very briefly touch those constructed for the treatment of solids
with plane-wave basis sets. At the same time we restrict the
discussion to static calculations and exclude applications in, for
example, Car—Parrinello molecular dynamics.

Besides presenting the formalisms we also summarize some
selected calibration studies and a few characteristic applications.
It is quite obvious that due to the by now huge number of
applications of ECPs this selection has to be quite subjective and
necessarily also incomplete. Fortunately a relatively large number
of review articles focusing on various aspects of ECPs has
appeared,” > where the reader can find further information.
Some more general information about relativistic quantum
chemistry can be found in condensed form in reviews by
Pyykké"” and Schwarz,®® as well as in more detail in books
edited during the past decade by Hess, Schwerdtfeger,’***
Hirao and Ishikawa,*® and Barysz and Ishikawa.*” The basics of
relativistic electronic structure methods were recently summar-
ized in monographs by Dyall and Faegri®® and by Grant.”’
Additional information is available from the www-database for
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many—particle basis

ECP

Figure 1. Coordinate system of quantum chemical ab initio methods.
The basic goal of ECP approaches is illustrated by the arrow: by reducing
somewhat the accuracy of the Hamiltonian, larger one- and many-body
basis sets can be applied, that is, for a given system the wave function
description becomes more accurate. Alternatively the computational
effort is reduced or the size of accessible systems is increased.

relativistic theory of atoms and molecules (RTAM) provided by
Pyykko,* as well as the printed collections summarizing work
from 1916 to 1999.*' ™%

Throughout this review, we use atomic units in the equations,
that is, the rest mass of the electron m , the elementary charge e,
the reduced Planck’s constant i = h/(27), and the Coulomb
constant 1/(47e,) are used as units for mass, charge, action/
angular momentum, and Coulomb force. In this system of units,
the velocity of light has a value of ¢ &~ 137.0359895. o = 1/c
denotes the fine structure constant. We also make use of the
Dirac bracket notation as described, for example, in the book of
Szabo and Ostlund.**

2. QUANTUM CHEMICAL PREREQUISITES

This initial section aims at readers not too familiar with
quantum chemical approaches and can be skipped by those
who are specialists. A more detailed description is available, for
example, from the book of Szabo and Ostlund.** The methods
and approximations discussed in this article can be located in a
three-dimensional coordinate system of quantum chemical ab
initio methods, see Figure 1, which can be viewed as a modifica-
tion of the two-dimensional chart of quantum chemistry pro-
posed by Pople in 1965.*

It is commonly accepted that quantum mechanics needs to be
applied to chemistry to obtain an accurate nonempirical theore-
tical description of atoms, molecules, and solids. The central
equation to solve is the time-dependent Schrodinger equation*®

Bw) = i 0]w) 1)

with H being the Hamiltonian defining the system and | W) the
wave function describing its state. In this review, we will only
consider cases where the Hamiltonian H does not explicitly
depend on time. Thus the separation ansatz

(W) = [y)-e™ (2)

applies and leads to the time-independent Schrodinger equation
for stationary states with total energy E and described by the wave
function |y)

H|yp) = E|y) (3)

We will further assume that the so-called Born—Oppenheimer
(BO) approximation®” holds. It allows an approximate separa-
tion of the Schrodinger eq 3 in a nuclear part and an electronic
part, which treats the electrons in the field of the nuclei at fixed
positions and corresponds to the basic equation for most
quantum chemistry electronic structure methods. Note that only
the BO approximation allows the chemist, for example, to draw
the well-known structural formulas with chemical symbols of the
atoms denoting the positions of the atomic nuclei/cores in space
as well as dashes and dots representing valence electron pairs and
unpaired valence electrons, respectively. However, further ap-
proximations are needed to arrive at such a simple schematic
representation of atoms, molecules and solids on the basis of
quantum chemical considerations.

We consider a general configuration space Hamiltonian for
n electrons and N nuclei, in the absence of external fields, that is

A no . n o N ZAZ/l
H=Yh()+ Yghj + ¥ (4)
i i<j i<u "u

The indices i and j denote electrons, whereas 4 and u stand for
nuclei. Z; is the charge of the nucleus A. The one- and two-
particle operators h and g may be of relativistic, quasirelativistic
or nonrelativistic form, each choice defining a plane in the
coordinate system of ab initio methods perpendicular to the
Hamiltonian axis, see Figure 1.

The exact solution of the time-independent Schrodinger eq 3,
even under the assumption of the Born—Oppenheimer approx-
imation, is infeasible except for a few one-electron systems. A
large part of quantum chemistry therefore deals with the devel-
opment of methods for the approximate, albeit sufficiently
accurate solution of eq 3. Two main strategies evolved during
the last almost nine decades, ie., wave function-based theory
(WFT)** and density functional theory (DFT).**° We will
mainly make use of WFT in the following, since it allows to
develop an ab initio formalism and yields better insight in the
underlying approximations of the methods discussed in this
article. Note, however, that this choice does not imply that the
ECP schemes cannot be derived for or applied in the framework
of DFT.

A central method of ab initio WFT is the Hartree—Fock (HF)
approach.>’ ~>° Here the most simple ansatz for a many-electron
wave function, which obeys the Pauli antisymmetry principle®®
and the indistinguishability of the electrons as elementary
particles, is used. The so-called Slater determinant®” for a
(closed-shell) n electron system is an antisymmetrized linear
combination of products of n one-electron wave functions, that
is, orthonormal spin—orbitals |¢)

1
!

The HF wave function does not solve the Schrodinger eq 3;
however, it maps approximately the unsolvable many-electron
problem to effective one-electron problems, that is, the
(canonical) Fock equation for the spin—orbitals |¢) and their
orbital energies ¢

ﬁ‘90i> = &) (6)

Here F denotes the Fock-operator, an effective one-electron
Hamiltonian, taking into account the (average) interactions of an
electron in the spin—orbital |@) with the nuclei and all other

| Prr) = —= det||@, (1))]@,(2))-..|@,(n)] ()
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electrons in the system. Since the Fock-operator F actually
depends on its own occupied eigenfunctions |@), the Fock
eq 6 has to be solved iteratively by means of the self-consistent
field (SCF) procedure.>"** The Fock equation is obtained for the
exact Hamiltonian in eq 3 and the approximate (normalized)
wave function in eq S by applying the Ritz—Rayleigh variational
principle

Epr = (@ue|H|Pur) = Eo (7)

with E, being the exact ground state energy. We note here in
passing that because of the unboundedness from below of the
Dirac Hamiltonian only the stationarity of the energy expression
can be required in the fully relativistic Dirac—Hartree—Fock
(DHF) case, OEpyr = (3<<I)DHF|I:I|CI>DHF> = 0. The energy
variation is performed with respect to changes of the orbitals
|@), under the constraint that they form an orthonormal set, that
is, (@;|@;) = 0; Most calculations apply the formalism of
Roothaan®® and Hall,*® where the orbitals |@) are expanded as
linear combinations of one-particle basis functions |))

lp;) = ZCi}'|Xj> (8)

J

. 60,61 62 .
for example, Gaussian or more rarely Slater’” functions. The

quality of this one-particle basis set decides how close one may
approach the best possible HF solution, that is, the HF limit to be
reached when using a complete one-particle basis set. Thus, the
one-particle basis set axis is one of two axes spanning the plane
defined by a given Hamiltonian in Figure 1.

The difference between the HF limit energy Egyr and the exact
energy E in eq 3 is called correlation energy® and results from the
momentary response of the electrons to their mutual interac-
tions, which are only treated on average in the HF formalism.
Several strategies were developed to systematically approach the
exact energy E and exact wave function |) in ab initio quantum
chemistry. These mostly use expansions of the wave function in a
basis of Slater determinants | D)

[y = ;CI]M)]) )

for example, the multiconfiguration Hartree—Fock SCF (MCHEF,
MCSCEF) agsproach,64 the configuration interaction (CI)
approach,®”®> many-body perturbation theory (MBPT),%*%’
or the coupled-cluster (CC) ansatz.%® For a given one-particle
basis set {|y;)} one may in these schemes systematically
construct larger/better many-electron basis sets {|®p)} thus
approaching the corresponding Hamiltonian limit, which
corresponds to a full configuration interaction (FCI). The
many-particle basis set axis is another axis spanning the plane
defined by a given Hamiltonian in Figure 1. Usually it is
impracticable to use complete one- or many-particle basis sets
and thus a major task of a computational quantum chemist is to
select besides a suitable Hamiltonian also the optimum com-
bination of one- and many-particle basis sets. Hereby the
chosen Hamiltonian already sets some practical limitations
due to the related required computational effort. Not always
the theoretically best founded Hamiltonian will allow in
practical calculations to approach the experimental result
closest. Typically a suitable compromise with a less rigorous
Hamiltonian and the possibility to use more extended one- and
many-electron basis sets performs best.

The partitioning of a many-electron system into subsystems,
which may be treated at different levels of theory, has been
investigated by several scientists, see, for example, the review
given by Huzinaga and references cited therein.'® Staying at the
effective independent-particle picture of the HF method one
may exploit that the determinantal wave function eq S and the
total energy eq 7 are invariant with respect to unitary transfor-
mations of the spin—orbitals |¢). Using one of several well-
established orbital localization methods,®>~7" one can arrive
at orbitals centered at or in close vicinity to the nuclei, which
may be classified either as energetically low-lying core orbitals,
or energetically high-lying valence orbitals representing lone
pairs, and at usually energetically high-lying valence orbitals
centered between two (or more) nuclei representing covalent
chemical bonds. Taking only the lone pairs and bonding
orbitals into account and representing the core orbitals together
with the nucleus by the symbol of the element, such a localized
orbital HF solution provides a similar picture of the electron
distribution in a molecule as the structural formulas frequently
used by chemists.

Since the computational effort to obtain approximate solu-
tions of the Schrodinger eq 3 with standard approaches formally
scales with the fourth (HF) or higher powers (CI, CC, MBPT) of
the number of orbitals, a large amount of effort goes into the
development of computational WFT methods which, by exploit-
ing, e.g., the locality of electron correlation, seek to reduce the
steep scaling of the computing time with system size and at best
reach a linear dependence for extended systems. However, when
increasing the system size by going from light to heavy atoms
these techniques do not lead to reductions of the computational
effort, and despite their chemical similarity, the elements of one
column of the periodic table often cannot be treated on equal
footing, for example, with a comparable accuracy. It was therefore
tempting from the beginning of the development of quantum
chemistry to remove the atomic cores, as long as they remain
sufficiently inert and transferable between various situations,
from the explicit treatment of the remaining valence electrons.
A relief from the nightmare of inner shells discussed by van Vleck
and Sherman’? was provided already very early in the history of
quantum chemistry by introducing pseudopotentials (PPs), for
example, by Hellmann for molecules’® and by Gombas in the
theory of metals.”*”> As a variant of effective core potentials
(ECPs) the PPs, as well as the more rigorous model potentials
(MPs), aim to model as accurately as possible the interaction of a
valence electron with the core of an atom, that is, the nucleus and
the core electrons/orbitals removed from the explicit quantum
chemical treatment. We note that also essentially all semiempi-
rical schemes restrict their explicit calculations to the valence
electron system in the field of the atomic cores.

3. RELATIVISTIC ALL-ELECTRON REFERENCE SCHEMES

The commonly used ECP method does not only have the
advantage to reduce the computational effort compared to an AE
calculation by limiting the number of electrons treated explicitly
but also allows an implicit incorporation of the most important
relativistic effects">”®”” merely by parametrization with respect
to suitable relativistic AE reference data. Many technical pro-
blems connected to relativistic AE Hamiltonians are circum-
vented by ECP approaches, which makes them attractive tools
for heavy-element quantum chemical studies. Questions to be
answered are, for example, to which extent relativistic operators
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acting mainly in the vicinity of the nucleus can be modeled in PP
methods by operators acting mainly in the spatial valence region,
or how accurately a relativistic two-electron operator such as the
Breit term can be modeled by effective one-electron operators at
the ECP level.

Relativistic AE approaches are discussed here only very briefly
for the following two reasons: First, relativistic ECPs are usually
derived from (atomic) relativistic AE reference calculations, e.g,,
(multiconfiguration (MC)) Dirac—Hartree—Fock (DHF) calcula-
tions”®”** or approximate two- and/or one-component (scalar-
relativistic) calculations using, e.g,, the Wood—Boring (WB)®** or
Cowan—Griffin (CG)® Hamiltonian, the approximate second-
order Dirac equation derived by Barthelat, Pelissier and Durand,*
the Douglas—Kroll—Hess (DKH)®*” ' Hamiltonian, or the relati-
vistic scheme of Nakajima and Hirao obtained by elimination of
the small components (RESC).”” In view of the limits of accuracy
of ECP parametrizations it is interesting to see which relativistic
contributions are so pronounced, that they still can be realistically
taken into account in an ECP adjustment of a given accuracy, and
which can safely be omitted.

Second, at least for small systems, relativistic AE methods
can be used to calibrate ECP methods, e.g., to check the ECP
transferability from the atom to molecules (or solids), or from
uncorrelated to correlated calculations. A number of molecular
electronic structures codes based on DHF solutions are avail-
able for this purpose, for examIple, MOLFDIR,”® DIRAC,>*
BERTHA,”>?° and others.”” '°! In this context, it should be
noted that modern ECPs can reach a fairly high accuracy, for
example, not only the incorporation of the dominant Dirac
one-electron relativistic effects is achieved, but also smaller
contributions because of the Breit interaction between two
electrons, the finite nucleus or even quantum electrodynamic
corrections can be accounted for. Since these contributions are
often neglected in quantum chemical AE calculations for all but
the smallest systems, ECP schemes can sometimes even reach a
better overall accuracy than approximate relativistic AE
methods.'®® For calibration studies it is important to remem-
ber that every ECP can model only the AE method it was
adjusted to, that is, one should distinguish between the
accuracy of the used reference data and the accuracy of the
ECP approach itself. This point is sometimes overlooked in
calibration studies.'® Thus, the Hamiltonian coordinate of an
ECP plane in Figure 1 is certainly smaller than the one of the
AE approach underlying the specific ECP model, but it may
actually be larger than the ones of other AE schemes omitting
some relativistic contributions which are implicitly included in
the ECP under consideration.

3.1. Dirac—Coulomb—Breit Hamiltonian

In the most accurate electronic structure calculations for
atoms, molecules and also solids the Dirac (D) one-particle
Hamiltonian is applied in eq 4

ho(i) = g + (Bi— L)@ + ;Vl(m) (10)

Here ¢ denotes the velocity of light (¢ ~ 137.035989S au).
Equation 10 is correct to all orders of the fine-structure constant
0. = 1/c. To have the same zero of energy as in the nonrelativistic
case the rest energy ¢* of the electron was subtracted. Further
1, denotes the 4 X 4 unit matrix, and I_;: = — iﬁ. is the momen-
tum operator acting on the i-th electron, with the vector

differential (del or nabla) operator V= (8/0x;,0/dy;, 0/ z;).

1

( is a three-component vector whose elements together with f;
are the 4 X 4 Dirac matrices

~ [0 b U I I U
o= ((_;, Z).)andﬁ— (02 —12) (11)

These can be expressed in terms of the three-component vector
of the 2 X 2 Pauli matrices &

(o 1) . (o —i
“= 1 o) 2T\ o )
6. = (; (11> (12)

the 2 X 2 unit matrix I, and the 2 X 2 zero matrix 0,. V;(r;)
denotes the electrostatic potential generated by the A-th nucleus
at the position of the i-th electron

) Z
Vilra) = —— (13)
Tij.
Frequently a finite nucleus is used,'®* for example, a Gaussian-

type charge distribution

pi(r) = po i exp( —17;r*) with 47 / drp;(r) = Z;

0

(14)

The parameter 77, can be determined from the nuclear radius R,
which is related to the nuclear mass according to

n, = 3/(2R}) with Ry = 2.2677 x 10-°M}/* (15)

Other variants of charge distributions are also in use, for example,
a finite hard sphere

. po,i lf r < R/’[
par) = {0 otherwise (16)

or a Fermi-type nuclear model

Po, i

pa(r) = 15 o —am (17)
Here the parameter c; (half-charge radius) is the radius at which
pa(r) = 0.5p0,1. The parameter a; is related to the skin thickness
t;, (t;/a; = 4In3), which is the interval across which p;(r) falls
from 0.9p,, to 0.1p0/1.83 Besides providing a more realistic
model than the point charge nucleus, the finite nuclear models
have the practical advantage that the wave function at the nucleus
is more well-behaved and the size of the highest exponents in
basis set expansions can be somewhat reduced. The Gaussian
charge distribution eq 14 is easy to implement and a natural
choice for Gaussian basis sets.

The Dirac Hamiltonian eq 10 does not only describe an
electron, but also its antiparticle, the positron. Because of the
structure of the Dirac Hamiltonian the corresponding relativistic
wave function for a one-particle system turns out to be a four-
component vector (four-spinor), the two upper components
(upper bispinor) being large for the electronic states, the two
lower ones (lower bispinor) being large for the positronic states
(charge degrees of freedom in the wave function). The general
properties of the solutions of the one-particle Dirac equation also

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480
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-10 HF DC WB SPP LPP
Hamiltonian

Figure 2. Schematic spectrum of occupied one-particle levels of the Pb
atom in its 6s°6p” ground state configuration from nonrelativistic HF,
relativistic DHF/DC and scalar-relativistic WB calculations as well as for
a scalar-relativistic small-core (22 valence electrons in Ss, Sp, Sd, 6s, 6p)
and a corresponding large-core (4 valence electrons in 6s, 6p) PP. Note
the logarithmic scale for the one-particle energies. The continua were
added schematically, and bound unoccupied levels between 6p and the
upper continuum are not displayed. Thick lines indicate a (near-)
degeneracy of levels.

hold true for the orbitals used in an independent-particle
description of a many-electron system, e.g., in the (MC)DHF
approach. Figure 2 displays the occupied one-particle levels from
AE HF and DHF calculations performed with the GRASP code®
for the Pb (Z = 82) atom in its 6s°6p> ground state configuration.
The continua for & > 0 and & < —2c” were schematically added,
and possible unoccupied bound levels between 6p and the upper
continuum are not displayed. In relativistic quantum chemistry,
where one is interested in the electronic states, it is common to
use the terms large components and small components for the
upper and lower components, respectively. Figure 3 shows for
the Pb atom in its ground state configuration that the small
components are nonnegligible only in the core region, that is, the
chemical behavior of an element is determined by the large
components. Saue showed, for example, that for Rn (Z = 86) the
small component density only contributes with 0.7% (0.6281
electrons) to the total density, is essentially localized within a
radius of 0.15 A and arises to 65% (99.9%) from the shells 1s—2p
(1s—5d)."® This is a motivation to eliminate the small compo-
nents, that is, the charge degrees of freedom from the Dirac
Hamiltonian, and to construct transformed AE Hamiltonians
which lead to two-component spinors. The odd and even
components of the four-spinor, as well as of two-spinors approx-
imating it, may be related to spin up and down, respectively, of
the particle (spin degrees of freedom).

In the simplest and most commonly encountered case of
relativistic AE calculations the two-particle terms in eq 4 are just
the nonrelativistic electrostatic Coulomb (C) interaction

(yielding the Dirac—Coulomb (DC) Hamiltonian correct to
0(a”))

gelirj) = — (18)
r,-}-

This choice is motivated by the fact that for the relativistic effects

in chemistry, for example, on bond distances and binding

energies, the one-particle Dirac relativistic contributions are by

far larger than contributions arising from relativistic corrections

-1
log, ,(r [Bohr])

Figure 3. Large (upper; solid lines) and small (lower; dashed lines)
components of the valence spinors of Pb in the 6s> 6p> ground state
configuration from MCDHEF calculations using the program GRASP.*?
The small components have a noticeable contribution only in the core
region and are shown in the inset.

to the Coulomb electron—electron repulsion.'” The most
rigorous two-electron interaction which can be derived from
quantum electrodynamics (QED) is the frequency-dependent
Breit interaction, given here in Coulomb gauge
N L. 1 (_ii‘(_ij
go,ca(if) = ——

rij 7',']‘

ein,wv/c

A~

(6-V)(@-V)

+ (el = 1) (19)

wijzl’]‘jCz
where the frequency of the exchanged photon is taken from the
orbital energy difference, that is, w;; = |&; — &|. In the limit c— oo
the Gaunt (G) term

.1 &a
foalif) = —— 2% (20)
rij 1’,']'

is obtained, which can be interpreted to contain besides the
Coulomb interaction also the magnetic interaction between two
electrons. The Gaunt term is quite frequently added to the Dirac
one-particle Hamiltonian (yielding the Dirac— Coulomb—Gaunt
(DCG) Hamiltonian correct to O(OLO)), since it does not require
the evaluation of additional two-electron integrals. The retarda-
tion of the interaction due to the finite velocity of light is
accounted for in addition to the magnetic interaction by the
frequency-independent Breit (B) interaction (yielding the Dirac—
Coulomb—Breit (DCB) Hamiltonian correct to O(a))
_ ot ai'&,- n (ai'ri,-)(z(l,-'nj)
1",’,’ 21’,} Vil'

gcs(i)j) (21)

It is often sufficient to treat the Gaunt- and Breit-interaction not
variationally, but merely by first-order perturbation theory after
the approximate solution of the Dirac—Coulomb—Hamiltonian
problem.®® The contribution of higher-order relativistic correc-
tions such as the vacuum polarization or the self-energy of the
electron can be derived from quantum electrodynamics (QED).
These are usually neglected due to their expected negligible
impact on chemical properties. It is noteworthy, however, that for
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the first ionization potential of the gold atom the contributions of
vacuum polarization and self-energy of the electron are estimated
to contribute with —0.021 eV."”® Modern ECPs can indeed be
adjusted with roughly this accuracy and the implicit inclusion of
such significant QED effects in valence-only calculations there-
fore should be possible.

Technical problems of relativistic electronic structure calcula-
tions based on the above-described Hamiltonians arise mainly
from the fact that the Dirac—Hamiltonian is not bounded from
below and thus an energy-minimization without additional
precautions may lead to a variational collapse. In addition, at
the many-electron level an infinite number of unbound states
with one electron in the positive and one in the negative
continuum are degenerate with the desired bound solution. A
mixing-in of these unphysical states is possible without changing
the energy and might lead to the so-called Brown—Ravenhall
continuum dissolution,'® which is sometimes also called Brown—
Ravenhall disease."'""''* A variational collapse at the one- or
many-electron level can be avoided if a no-pair Hamiltonian is
constructed, that is, the Hamiltonian is projected onto the
desired electronic states by means of suitable operators P, as
suggested by Sucher''>'"?

H,, = P.HP, (22)

In practice the projection is achieved if the Hamiltonian is
formulated in Fock space and the occupation of negative energy
states is forbidden. Thus Dirac—Hartree—Fock (DHF) calcula-
tions, as well as subsequent wave function-based correlated
calculations, are not plagued by continuum dissolution. In
(atomic) finite difference calculations the undesired solutions
are avoided by imposing suitable boundary conditions.*"**

For practical calculations using finite basis sets a more
important aspect is the coupling of the upper and lower
components of the wave function via (- p,, which may lead to
a variational collapse because of the so-called finite basis set
disease."" """ If the basis set used to describe the lower
components does not span the function space corresponding
to first derivatives of basis functions expanding the upper
components, zero or near-zero kinetic energy matrix elements
may result. The kinetic energy may thus not be able to balance
the potential energy, resulting in too low total energies. Conse-
quently a routinely used remedy are so-called kinetically balanced
basis sets. A comparison of the various prescriptions to construct
kinetically balanced basis sets was given recently by Kutzelnigg
and co-workers.""> A different approach to avoid the problems
resulting from the unboundedness of the Dirac operator and to
arrive at accurate solutions is the relativistic free complement
method of Nakashima and Nakatsuji.''®

The problems related to the unboundedness of the Dirac
Hamiltonian from below have been successfully solved for
practical calculations, especially for atomic finite difference
DHEF calculations, which are used to generate AE reference data
for the ECP adjustment. For further details concerning difficul-
ties (and practical solutions) associated with relativistic AE
Hamiltonians the reader is referred to, for example, a review
article by Kutzelnigg,""” and the books of Dyall and Faegri*® and
Grant.”

Since the ECP approach is an approximate method, the
adjustment of highly accurate ECPs was for many decades not
considered to be feasible. It is thus understandable that various
still very popular, and for most chemical problems sufficiently

accurate, sets of ECPs are based on AE reference data, which
is not obtained with the DCB Hamiltonian, but rather with
the sirnpler DC Hamiltonian, some two- or one-component
approximations of it such as the Douglas—Kroll—Hess
(DKH),*” " Cowan—Griffin (CG),** or Wood—Boring (WB)**
Hamiltonians, or even at the nonrelativistic level. A number of
other approximate relativistic AE schemes exist,*?>"'71%7
some of which also have been used occasionally to obtain
reference data for the ECP adjustment.**”* An overview of some
of the methods is given by Karwowski and Kobus'*® and
Barysz.'* In the sections 3.2 and 3.3, we only concentrate on
the DKH, CG and WB approaches, which are used in some
currently popular ECP schemes. Some motivation to rely on the
corresponding approximate reference data is given in the discus-
sion of relativistic effects in section 4.

3.2. Douglas—Kroll-Hess Hamiltonian

The elimination of the small components from the Dirac
equation to order @ for example, by using the classical
Foldy—Wouthuysen (FW) transformation,"*>'*! leads to the
Pauli Hamiltonian,*®*® which because of the occurrence of
unbound operators such as the — (1/8)o’p* mass-velocity
term can lead to a collapse in variational calculations. The same
is true for the Breit—Pauli Hamiltonian, which can be derived
from quantum electrodynamics (QED)."*? Although a pertur-
bative treatment of relativistic contributions based on the Pauli
Hamiltonian is valid for light elements, it can fail for heavier
ones. A more suitable transformation leading to a variationally
stable Hamiltonian was devised by Douglas and Kroll'** and
later further developed and put to work by Hess and co-workers
in the context of quantum chemical calculations.””~*° A review
was published recently by Nakajima and Hirao.”" The coupling
of the upper and lower bispinor of an electronic solution of the
Dirac equation is due to the odd terms in hp in eq 10, that is,
terms anticommuting with 5. Using an unitary transformation
expanding the Hamiltonian in powers of the external potential
V the effect of the odd terms can be reduced and an ap-
proximate two-component Hamiltonian can be extracted
by eliminating them from the result. The Douglas—Kroll—
Hess (DKH) approach starts with a free-particle FW transfor-
mation Uy of hp

(i) = Uo()ho () U5 (1) = BE + & (i) + O,(1) (23)

where &, and [91 are even and odd operators of order V,
respectively.

él(l> == At(
O\(i) = — (24)
with
AO(’) = A:(I + ﬁRi)) A; (25)
 BE .
Ri==—"7, E=y ¢+ dp? (26)

v is the hydrogen potential at the Bohr radius, then A, ﬁ, V,
and E, can be estimated to be of order o’ o, a’ and a2
respectively. Therefore & and (7, are of order a* and o',

respectively.
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The nth order DKH transformation of the Dirac Hamiltonian
is given by

hoin (i) = U () Uy (). 01 (0) U0 (i) ho ()T ()T (). 0L L ()T ()

(27)
with

Ua(0) = (1 + W2(0)" + W,(0) (28)
Here W,, is an integral operator with the kernel

W.(F,F) = —b—0.(5, F) (29)

The odd operator O,, is of order 1 in the external potential V and
is generated by the previous n transformations. The application
of U; to hy yields

howe (i) = BE + &() + O50) + &) + .. (30)

with

O,(0) = Wi, &4()), &0) = *%[Wl(i);@?l(i)] (31)

In comparison to 6’ the amphtude of the odd term in (9 is
reduced from order (1 to order o®, whereas compared to &; the
even term &, is of order o.* 1nstead of order o.*. Thus, after two
DKH transformations the resulting second-order DKH2
Hamiltonian, which is bounded from below and thus varia-
tionally stable, has even terms correct to order 0%, and the
lowest-order odd terms are of order a*. For the one-electron
case the odd terms may be systematically removed in this way
order by order.

For many-electron systems the DKH transformation may be
applied to the two-electron interaction g(i;). In scalar-relativistic
calculations, the first transformation of the two-electron opera-
tors was found to be about as important as the fifth-order
transformation of the one-electron operators”™

00(i)00(j)§(i!j)0(;1U)Ual(i) = g(l,]) + [UO(i)Jg(iJj)}fng(i)
+100(), 86010 (G) + [Uo(0), [0, 66 )NT, " (DTG ()
(32)
In standard applications, one can neglect the commutators and
use the untransformed Coulomb operator for the electron—
electron interaction without significant loss of accuracy.
Samzow and Hess applied the DK transformation to the DCB

Hamiltonian'** and arrived, after separating spin by use of the
Dirac relation

pas

+ i+ [(Bf (1) % B (33)

at the DKH SO term. Keeping only the lowest order o
contributions, the Breit—Pauli (BP) SO operator can be derived.
Both Hamiltonians are closely related and can be written as sums

410

over one- and two-electron terms, that is

Zhso + Y 15°G,j) (34)
i#j
The DKH one-particle SO term
hfoDKH(') = Bihi%P(OBi (35)
is related to the Pauli one-particle SO term
Zy o [T, 4
7SO [\ 2, il >
hy gp (i ) = ;2_62 § (ﬁf X Pi) (36)
by the kinematic factor
~ ZCZAi
Bi N 37
e ®)

where A and E are defined in eqgs 25 and 26, respectively. The
DKH two-electron SO term

hgcl))KH(i)]) =

+ BjA25 - (—3’ X p;) B,-A,-] (38)
r
exhibits a similar relation to the BP two-electron SO term

. 1 A - r
hw(h) = =556 + %) <— x n) (39)
c r
both accounting for the spin-same-orbit and spin- other orbit
interactions. Note that for low momenta E — ¢* and thus
A— 1and B— 1, that is, the DKH SO Hamiltonian reduces
to the BP SO Hamiltonian. Because of the 1/r° singularity
the BP SO operator can only be used in low-order perturba-
tion theory after a scalar-relativistic DKH AE calculation,
whereas the DKH SO operator is also suitable for variational
calculations.'**

Calculations using the above SO Hamiltonians require relatively
expensive evaluations of one- and especially two-electron integrals.
Therefore Blume and Watson investigated to which extent the BP
two-electron SO terms eq 39 can be folded into an effective one-
electron SO operator analogous to 0 eq 36 when using an effective
nuclear charge Zgt 135,136 Using 7% as an adjustable parameter SO
operators of this type were also used in PP calculations."””~ **° Hess
and co-workers proposed a mean field SO method for both the
structurally related DKH and BP SO Hamiltonians leading to an
effective atomic one-electron SO Hamiltonian which is applicable
in correlated calculations."*' The atomic mean field (AMFI) SO
method'*' was also used in MP and PP calculations."**'**

The DKH2 and DKH3 formalism was mainly used in the
development of MPs, both for an implicit and an explicit
inclusion of relativistic contributions, see sections 7.2 and 7.4,
as well as to generate reference data for calibration of both PPs
and MPs. The approach is in the meantime available in a large
number of quantum chemistry codes using finite basis sets,
whereas a finite difference implementation has not been reported
to the best of our knowledge.

3.3. Cowan—Griffin and Wood—Boring Hamiltonian
The elimination of the lower bispinor from the Dirac equation
leads to the two-component Wood—Boring (WB) equation.®*
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The (electronic) eigenvalues of the Dirac Hamiltonian are
obtained exactly if during the solution of the WB equation the
energy-dependent Hamiltonian

L p,)( +E‘2V()> (@)

+ Y Vi(ra) (40)
7

—

hws (i) =

o |

is iterated. The energy-dependence of the WB Hamiltonian
leads to (slightly) nonorthogonal orbitals, e.g., for the Pb
ground state the maximum nonorthogonality is observed for
the 1s and 2s core orbitals, that is, (15|25> = 0.040S5, and
significantly smaller values for the 6s and 6p valence orbitals,
that is, <n5|6s> < 0.0013 and {np|6p) < 0.0009 for n = 1-5,
respectively.'** Wood and Boring used this Hamiltonian in
molecular DFT/X, AE calculations. The application of the
Dirac relation eq 33 allows the partitioning of spin-independent
and spin-dependent parts, and therefore the derivation of a
scalar-relativistic WB Hamiltonian, which is formally obtained
by replacing G; - p; by p; in eq 40.

In the development of ECPs the WB Hamiltonian is mainly
used in atomic finite difference calculations as an alternative to
the more involved DHF/DC approach, which was in early
implementations often plagued by convergence problems, to
generate reference data for energy-consistent PPs, 7155 gee
section 6.1. In its spectral re gresentatlon itis used as SO operator
within the MP approach,'® see section 7.1.

Applying the central field approximation one obtains from
eq 40 for an one-electron atom the following equation for the
radial function P,,,.(r), corresponding to the upper component of
the solution of the Dirac equation:

(r) = eucPuc(r) (41)

The relativistic quantum number « in eq 41 is defined in terms of
the quantum numbers of orbital and total angular momentum,
l'and j, as

K= F(+ 1/2)forj=1%1/2 (42)

(ils + hvv + hp + }Also)PnK

The radial function P,,(r) is related to the orbital |, by

F10und = = Pu(r) 27 /1) (+3)

with ,.,,, denoting the spinor spherical harmonics. In the WB AE
approach the nonrelativistic Schrodinger Hamiltonian
1d  1l+1)

h(i) = — =5 + ———+V 44
s(0) 2 dr? 2r2 * (44)
is supplemented by three energy-dependent relativistic terms,
that is, a mass-velocity (MV), a Darwin (D), and a spin—orbit
(SO) term

. o? s N (1 v d 1
oy = —lew = VE = = B (;‘7)
A -1
- o?dV_ ok + 1 o? .
hSO = _T EBan; By = (1 + [EYIK - V(r)]>
(43)
For one-electron systems one has V =—Z/rin eqs 41, 44,

and 45, which can be solved iteratively and yield the same

one-particle energies as the corresponding Dirac-equation. In
the many-electron case the correct nonlocal Hartree—Fock
potential V is used in eq 44, however a local approximation V &
V(r) toitis inserted in eq 45514 Similar to the energy €, also
the local potential approximation V has to be iterated, as it is the
case for V. .
Averaging over spin yields k = —1, that is, the SO term hgo
vanishes for the scalar-relativistic WB approach. The CG
approach in addition neglects the Darwin term hp, for angular
quantum numbers [ > 0, and the corresponding one-electron
energies become identical with eigenvalues of the Klein—
Gordon equation for spin-0 particles. The numerical results
for energy differences, i.e., excitation energies, ionization
potentials and electron affinities, of the scalar-relativistic WB
and CG approaches seem to agree for not too highly charged
ions typically within 0.01— 0.05 eV, for example, for the d
transition elements the largest difference of 0.05 eV occurs for
the ionization from the 5d shell of Hg.">*'*" A comparative
study of several quasirelativistic methods used in atomic
structure calculations was given by Karwowski and Kobus.'**

4. RELATIVISTIC AND ELECTRON CORRELATION
EFFECTS

In the ECP approach all relativistic contributions originating
from the atomic cores are usually folded into the parameter set
and the valence electrons are treated formally nonrelativistically,
see section 5. Correlation effects are usually treated explicitly in
the valence shell, whereas core—valence contributions may be
modeled by a CPP, see section 5.5. In the following both
relativistic and electron correlation effects will be briefly dis-
cussed. There is a number of excellent review articles focusing on

relativistic effects, which the reader is referred to for further
details, 12327677159

4.1. Definition and Evaluation

Relativistic effects/contributions may be defined as the differ-
ence of the results of a relativistic and a nonrelativistic calculation,
that is, calculations with the speed of light in atomic units ¢ ~
137.035989S and ¢ — oo, respectively. Ideally for both the
relativistic (r) and the nonrelativistic (nr) case the exact form
of the operators X, and X,,,, as well as the exact wave functions
|W,) and |W,,,) are available for the evaluation of the relativistic
contribution AX,

AAXrel - <lpr‘5(r|lpr> - <lpnr|5(nr|lpnr> (46)

However, such a pleasant situation is very rare. For chemistry the
hydrogen atom and hydrogen-like ions with nuclear charge Z are
probably the most important cases where eq 46 can be rigorously
used. Both the Dirac and the Schrodinger equation can be solved
analytically, that is, the energy expectatlon values/eigenvalues
after subtracting the rest energy ¢ of the electron are

27 -1/2
En = £|1 + Z/e -
n— x| + \/x2—(Z/c)
(47)
and
2
E, = _zz_nZ (48)
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The relativistic quantum number x is defined in eq 42. In
contrast to the nonrelativistic result eq 48 two sets of solutions
exist in the relativistic case eq 47. These are separated by ~2¢%,
that is, the rest energy of an electron-positron pair. The Dirac
equation is not merely a wave equation valid for an electron, but
rather for spin — 1/2 particles as both electrons and positrons.
The solutions in eq 47 near the zero of energy are called
electronic states and have to be compared to the nonrelativistic
solutions in eq 48 to evaluate the relativistic contribution to the
total energy of a one- -electron system. The negative energy
solutions near —2¢ do not correspond to electronic states and
are sometimes called positronic states. A Taylor expansion of
eq 47 yields (after neglecting (Z/c) under the square root) as the
leading term the nonrelativistic energy increasing as Z*, and a first
correction term increasing as Z*. Since the prefactor of this
lowest-order relativistic energy contribution is 1/c*, one may
expect that the correction becomes chemically relevant only for
heavy nuclei.

For a many-electron system the exact relativistic Hamilto-
nian is not known (see section 3) and neither the nonrelativistic
nor the relativistic Schrodinger equation is analytically solvable.
Thus, the relativistic contribution depends on the approximate
relativistic many-electron Hamiltonian H; as well as on the
approximate nonrelativistic and relativistic many-electron wave
functions |‘Pm> and |1Pr), that is, the one- and many-electron
basis sets (bs) and the computational method (cm) applied to
determine the expansion coeflicients. In case one is interested
in a quantity other than the energy, the operator X, might also
be available only in some approximate form X,. Thus, in practice one
can only evaluate an approximate relativistic contribution AX,

~ cm, bs ~ cm, bs

) — (W,

~cm,bs, 2 ~ cm, bs

= <lp , | X |1IJ |)<nr|III ’ (49)
Typical examples are the various relativistic bond length con-
tractions obtained for AgH, see Figure 6 in the the review article
of Pyykko, and for AuH, see Figure 1 in a publication of
Schwerdtfeger et al.'®

Correlation effects/contributions can be defined as the differ-
ence between the result for the exact correlated (c) solution | W)
of the many-electron problem and the best possible uncorrelated
(uc) one |W,), which is obtained at the independent-particle
level at the basis set limit (c0). Denoting the exact HF limit

solution by |1I’IlfcF ), one can write
¢ = (WX|WP) — (WD [X|WLE ) (50)

For AX.= AE and X = H this corresponds in the nonrelativistic
case to the definition of the correlation energy given by
Lowdin.®® Again, since an exact wave function |W) is usually
not available, an approximate correlated solution |\W,) has to be
used. Although a FCI is sometimes said to provide an ’exact’
solution, it is only feasible in a finite one-particle basis set.
Moreover, although the exact HF limit solution |‘PHF Y can be
achieved for atoms and possibly for linear molecules by finite
difference methods, one has to settle down, at least in the
general polyatomic case, with an approximate HF solution
|‘I’uHcF ") obtained for a finite one-particle basis set. Finally,
the evaluation depends on the way relativistic contributions
are included in the calculation, for example, correlation
contributions evaluated at the nonrelativistic and at an
approximate relativistic level are of similar magnitude, but
usually do not agree. Whereas one can assume that in the
nonrelativistic case the exact form of the operator X,, is

known, one might have to use an approximate form X, in the
relativistic case. Therefore only an approximate correlation
contribution is accessible, that is,

cm,bs ~HF,bs .~ HF,bs

A%, = (B RETY C EREEy (s1)

In summary, both relativistic and correlation contributions
depend on the way they are calculated and they are coupled.
One may hope that at least for light elements, where relati-
vistic contributions are weak, the coupling is also weak,
whereas for heavier ones the relativistic changes of the wave
function and the electron density will certainly lead to
changed correlation contributions. Instead of an exact expres-
sion

<lpr, c

Xr|lpr,c> =

<1pHF,oo|an|1pHF,oo> + AXr
+AX. + AAX, . (52)

one has to rely on a corresponding approximate one

cm,bs ~ .~cm,bs HF,bs ~ HF, bs
(ITIRAIP) = (P e P00 )

nr,uc nr, uc

+ AX, + AX, + AAX,. (53)

Therefore, it is always necessary to state exactly the level of
theory at which relativistic effects were evaluated. It has been
pointed out by Schwarz that, e.g., for different approaches the
evaluation of the first expectation value in eq 53 may still lead
to similar numerical results, which however due to the
different relativistic methods applied may lead to differing
interpretations. 159161 Thys, besides many wrong interpreta-
tions there may exist more than one which is correct.

Often it is convenient to discuss relativistic effects at the
independent-particle level, for example, by comparing DHF/
DC or DHE/DCB results to nonrelativistic HF results. This
allows to break down the whole effect into contributions of
individual orbitals or shells, which is handy for the interpreta-
tion as well as often for a qualitative prediction of relativistic
effects. In the following we will only consider a few aspects,
which are relevant to motivate the inclusion of relativistic
contributions in the ECP parametrization. We try to single
out which relativistic contributions need to be taken into
account in order to be able to achieve a certain accuracy, e.g.,
an accuracy of at least 0.1 eV in energy differences such as
excitation energies, ionization potentials, electron affinities and
binding energies and 0.01 A in bond distances.

4.2. Examples for Atoms

One distinguishes direct and indirect relativistic effects. The
direct effects arise from substituting the nonrelativistic Hamiltonian
by a relativistic one and have been shown to originate mainly in
the spatial core reglon,159 162 that is, close to the nucleus. Direct
scalar-relativistic effects act on all orbitals, especially those which
have a significant amplitude in the core region, and always lead to
a contraction and stabilization. Moreover, direct spin—orbit
(SO) effects lead for shells with angular momentum symmetry
> 0 to a SO splitting yielding two subshells with total angular
momentum quantum numbersj=[—1/2andj=1+1/2, see, for
example, the orbital plots for Hg79+ published by Burke and
Grant.>'®® Compared to the scalar-relativistic solutlons with
angular momentum symmetry [ the spinors with j = [ — 1/2
experience a stabilization and contraction, whereas those with j =
I + 1/2 undergo a destabilization and expansion.
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Figure 4. Experimental ionization potentials of the alkaline atoms and
experimental electron affinities of the halogen atoms in comparison to
the corresponding differential relativistic and electron correlation effects.
Nonrelativistic HF and relativistic DHF results were evaluated with
GRASP.®

Indirect relativistic effects occur only in many-electron atoms
and are a consequence of the direct effects. They are caused by
relativistic changes of the inner compact orbitals, which lead to
modified effective potentials for the outer more diffuse ones.
Again, in a many-electron atom all orbitals experience indirect
effects, however their magnitude and sign depends strongly on
their spatial extension compared to the other occupied shells.

As a rule one usually finds for the valence orbitals of a many-
electron atom that the s and p shells are stabilized and contracted,
mainly by dominating direct relativistic effects, whereas the d and
f shells are destabilized and expanded, mainly by dominating
indirect relativistic effects. The expansion and destabilization can
be explained by the reduced effective nuclear charge acting on the
outer orbitals, which results from the strong contraction of the
inner shells and the more efficient shielding of the nuclear charge
related to it. However, indirect relativistic stabilization also is
observed, for example, for heavy post-d elements such as Au or
Hg. The outermost d shell is strongly destabilized and somewhat
expanded by dominating indirect relativistic effects. Therefore
the valence s shell experiences an increased effective nuclear
charge and thus an additional stabilization and contraction. A
detailed analysis of relativistic effects in the neutral atoms of
d- and f-block elements was provided by Autschbach et al.'®*

Desclaux published in 1973 results of nonrelativistic HF and
relativistic DHF/DC calculations for the atoms with nuclear
charges from 1 to 120.'% From the ratios of relativistic and
nonrelativistic orbital energies and (r) expectation values one can
get a quick overview over the importance of relativistic effects for
all elements of the periodic table. An illustrative use of the data
tabulated by Desclaux is the graphical localization of the well-
known gold maximum of relativistic effects by plotting the ratio of
relativistic and nonrelativistic (r) expectation values for the 6s
orbitals of Cs (Z = 55) to Fm (Z = 100).>”” An overview over
atomic relativistic calculations for larger series of elements has
been given by Pyykks.! Nowadays tabulations of atomic results
somewhat lost their importance, since the correséponding atomic
structure codes are readily available®*®*"**'%° and one can
quickly obtain the data for essentially any configuration/state
of the atom/ion one is interested in. This is not the case for
correlated calculations, which require a significantly higher
computational effort than the HF/DHE studies. Often relativistic

effects are counteracted by correlation effects, which usually favor
a higher number of paired electrons and also a higher occupation
of f and d shells.

The discussion of relativistic atomic orbital contractions and
expansions is actually more involved than a comparison of {r)
expectation values obtained with a nonrelativistic and a relati-
vistic wave function may imply. The nonrelativistic Schrodinger
one-electron Hamiltonian cannot be obtained from the relati-
vistic Dirac Hamiltonian directly by merely applying the limit
¢ — 00, but rather a transformation from the Dirac picture to
the Schrodinger picture has to precede, for example, the
Foldy—Wouthuysen transformation.'*>'*! This is connected
to the finding that the operator 7 represents a physical
quantity #iharge and Thae in the Dirac and Schrodinger
picture, respectively.167 The comparison of (r) expectation values
from DHF and HF calculations thus not only reveals relativistic
changes of the wave functions but also so-called picture change
effects. The picture change contributions can become very large for
the innermost shells (up to 50% for 1s) and become insignificant
for valence shells (e.g, < 0.1% for 6s)."" Since the discussion of
ECPs one mainly deals with valence shells, the picture change
contributions will not be explicitly considered in this article.

A simple example for the importance of relativistic and
correlation contributions are the ionization potentials of the
alkaline ions plotted in Figure 4. The nonrelativistic HF values
are clearly dominating. The differential relativistic and correla-
tion contributions were evaluated as differences between AE
DHEF and HF results and experimental data and AE DHF results,
respectively. The relativistic and correlation contributions in-
crease slowly with nuclear charge, both leading to higher ioniza-
tion potentials. The relativistic contributions to the total energy
increase as ~ Z***, the one to the ionization potentials of Na to
Fr with ~ Z*% (the value for Li is below 0.001 eV and was
excluded). The correlation contributions to the alkaline atom
ionization potentials are somewhat larger than the relativistic
contributions and arise mainly from core—valence correlation.
For the electron affinities of the halogen atoms also displayed in
Figure 4 the correlation contributions increase the electron
affinity and are above 1 eV, except for F. The relativistic
contributions decrease the electron affinity, mainly due to the
large contributions of the SO interaction, which lowers the
energy of the neutral atom. If an accuracy of ~0.1 eV is desired
for main group elements, relativistic contributions have to be
included already for the post-3d main group elements.

The simple rules concerning dominating direct and indirect
relativistic effects acting on different orbitals are very well
illustrated by the work of Martin and Hay, who evaluated
differential relativistic and correlation effects, that is, contribu-
tions to energy differences, in excitation and ionization energies
of the third- to fifth-row transition metals."*® Differential relati-
vistic effects were evaluated as differences between scalar-relati-
vistic CG and nonrelativistic HF results, whereas differential
correlation effects were obtained as differences between experi-
mental data and scalar-relativistic CG HF results. The lowest LS
states of s2d”, s'd™**, d"*2 s'd", and d"*" were considered. Results
for s’d” — s'd"*" energy differences in atoms at the beginning
and end of each row are displayed in Figure S. In accordance with
their increase with Z the largest contributions for each row are
always found at the end of the row, with the gold maximum at the
end of the 5d series.””” For example, the Cu, Agand Au $d° —
s'd'® excitation energies are relativistically increased by 0.43,
1.05, and 3.27 eV, respectively. For Ni, Pd and Pt s2d"— d"*? the
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Figure 5. Experimental s’d” — s'd""" excitation/deexcitation energies
for the lowest LS states of selected 3d (Sc, Cu), 4d (Y, Ag), and 5d (La,
Au) transition metals in comparison to the corresponding differential
relatilvsigtic and electron correlation effects. Data taken from Martin and
Hay.
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Figure 6. Experimental f"d's* — f""'s> excitation/deexcitation ener-
gies for the lowest LS] states of selected the lanthanide atoms in
comparison to the corresponding differential relativistic and electron

correlation effects. Data taken from Dolg and Stoll.*°

relativistic contributions are even larger, e.g,, 0.57, 1.57, and 5.15
eV, respectively. The correlation contributions are often of
opposite sign, that is, —1.55, —0.10, and 0.12 eV for Cu, Ag
and Aus’d” —s'd"® and —4.33, —1.19, and —0.66 €V for Ni, Pd
and Pt s>d" — d"*%. Since for the lightest transition element Sc
the differential relativistic contribution is already 0.12 eV, one has
to include relativistic effects for all transition metals, if an
accuracy of ~0.1 eV is desired.

Similar differential relativistic contributions are available for
the lanthanides’®'* and actinides'*’ by the comparison of
scalar-relativistic WB and nonrelativistic HF results. In case of
the lanthanides also correlation contributions were estimated.
The results for f*d's* — f**'s energy differences are displayed in
Figure 6. It is noteworthy that at a nonrelativistic level both
lanthanides and actinides might preferably be divalent. This can
be seen from Figure 6 by subtracting from the experimental
excitation energy the relativistic contribution, which leads to
strongly negative results, that is, a favored f""'s* configuration.
Thus only the very strong indirect relativistic destabilization of
the f shell favors higher valencies. In case of Ce and Th the

414

5
r (Bohr)

Figure 7. Relativistic valence spinors (solid lines) and nonrelativistic
valence orbitals (dashed lines) of Pb in the 6s* 6p” ground state
configuration from state averaged MCDHF and MCHEF calculations
using the program GRASP.** Note that 5ds and 5d, as well as 6p, , and
6p nearly coincide.

experimentally observed ground state configurations 4f'5d'6s>
and 6d”7s> are relativistically stabilized against the nonrelativistic
ground state configurations 4f°6s” and 5*7s> by about 2.73 and
9.47 eV, respectively.'®® (Note that in Figure 4 of the original
publication the Ce configurations 4f’6s* and 5d°6s” were erro-
neously interchanged for the relativistic case and thus the
relativistic contribution of 4.13 eV mentioned in the text is
wrong.) It is obvious that for lanthanides, as well as for the
heavier actinides, relativistic contributions have to be included,
often even for qualitative considerations.

To investigate which relativistic contributions for heavy main
group atoms should be included in the adjustment of ab initio
ECPs we consider some examples of atomic and molecular DHF
calculations for the group 14 elements. Figure 7 shows the
relativistic and nonrelativistic valence orbitals of Pb in its ground
state configuration. The relativistic contraction of the 6s shell as
well as the SO splitting of the 6p shell are clearly visible. The
nonrelativistic 6p orbital has a similar radial shape as the
relativistic 6p3, spinor. Since the 6p; /, spinor is more compact
in the valence region, an overall relativistic contraction of the 6p
shell results. It also has to be noted that the relativistic *P, ground
state has a contribution of over 90% from 6p% /2 for Pb, whereas it
is only 67% for C, where LS coupling is a good description, cf.
Figure 8. When neglecting the remaining very small fine structure
splitting in C, the situation encountered there essentially corre-
sponds to the nonrelativistic limit for all heavier homologues.
Figure 8 also reveals that for group 14 elements heavier than Si
LS coupling begins to break down and an intermediate coupling
scheme has to be applied. The pure jj coupling is approximately
reached at Pb and provides an excellent description for Eka-Pb.

Table 1 lists atomic s*p” J = 0+ — s' p° J = 2— excitation
energies of the group 14 elements.*® It can be seen that the one-
particle relativistic effects are substantially larger than the two-
particle ones. If one assumes a target accuracy of 0.1 eV, one-
particle relativistic contributions need only to be accounted for
Ge and the heavier homologues, whereas for an refined accuracy
of about 0.01 eV all group 14 elements need to be treated
including one-particle (Dirac) relativistic contributions, whereas
for Sn, Pb, and Eka-Pb two-particle (Breit) relativistic contribu-
tions and even contributions of quantum electrodynamics
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Table 1. Finite Nucleus Contributions AAEg,, Contributions
of the Dirac (One-Particle) Relativity AAEp, and the Breit
(Two-Particle) Relativity in the Low-Frequency Limit for the
Exchanged Photon AAEg 4 and the Corresponding Frequency-
Dependent Interaction AAEg, as well as Quantum Electrody-
namical Contributions AAEqgp (Vacuum Polarization, Self-
Energy) for the s’p” J = 0+ — s' p’ J = 2— Excitation Energies
AE (all in V) of Group 14 Elements (Nuclear Charge Z,
Nuclear Mass M) from Average-Level Multi-Configuration
Dirac—Hartree—Fock Calculations Using the Code GRASP®
with Extensions for QED Corrections by Thierfelder and
Schwerdtfeger'*®

X Z M AE AAE, AAE, AAEg, AAE; AAEgp

C 6 1201 2625 0.000 0.019 —0.002 —0.002 —0.001
Si 14 28.09 2706 0.000 0.073 —0.002 —0.002 —0.002
Ge 32 7264 3.727 0.000 0457 —0.004 —0.004 —0.008
Sn 50 118.71 3.407 —0.001 1.077 —0.008 —0.008 —0.013
Pb 82 2072 5958 —0.016 3.780 —0.023 —0.027 —0.034

Eka-Pb 114 289 11.651 —0.417 10.481 —0.060 —0.070 —0.070

(QED) such as vacuum polarization and self-energy need to be
considered. It was pointed out by Thierfelder and Schwerdtfeger
that for ionization potentials from the valence s shell of heavy
elements the QED contributions become as important as those
of the Breit interaction.'®® The results of Table 1 indicate that
this somewhat surprising finding also holds for the lowest
excitations out of the valence s shell. It is also interesting to see
that for heavy elements such as Pb contributions due to the finite
nucleus become non-negligible and yield very large corrections
for superheavy elements such as Eka-Pb.

4.3. Examples for Molecules

In molecules, relativistic bond length contractions and, some-
what more rarely, expansion are observed, as well as bond
stabilizations and destabilizations. The bond contractions and
expansions may occur parallel to orbital contractions and expan-
sions but cannot necessarily be explained to be caused by them.
For an extensive list of examples and references we refer to the
review by Pyykko,” and for a detailed analysis of possible inter-
pretations to articles by Schwarz.*>'*”'%" If a heavy (relativistic)

Table 2. X—H Bond Distances R, (A) and Binding Energies
E,, (eV) from Molecular Dirac—Hartree—Fock Calculations
Using the Dirac—Coulomb—Gaunt Hamiltonian”

XH, R, ARy ARG E, AEp AEg

CH, 1.08323 —0.00013 0.00009 13.7068 —0.0142 —0.0027
SiH, 148677 —0.00089 0.00017  9.6455 —0.0542 —0.0027
GeH, 1.55793 —0.00637 0.00051 8.3850 —0.3709 —0.0024
SnH, 173369 —0.02143 0.00089  6.8421 —0.8066 —0.003S
PbH, 173703 —0.07236 0.00167  S5.1561 —2.3661 —0.0220

“ARp, AEp and AR, AEg denote the relativistic Dirac (one-particle)
and Gaunt (two-particle) contributions. Data taken from Visser et al.!os

atom A and a more electronegative light (nonrelativistic) atom B
form a polar molecule A%B°” and the highest valence orbital of A
is relativistically stabilized, the electron transfer from A to B
requires more energy and thus the binding energy decreases. An
example is AuF, where a 25% destabilization of the bond was
calculated."® If on the other hand B is less electronegative, a polar
molecule A% B%* is formed, the electron transfer from B to A
yields more energy and the binding energy increases. An example
is AuLi, where a 30% stabilization of the binding energy is
observed.'® If SO effects in the orbitals involved in covalent
bonding are relevant, things get somewhat more involved. In a
diatomic molecule the p, ;1 ,, spinor forms 1/3 po and 2/3 pm
components, whereas the ps 5 1/, spinor forms 2/3 poand 1/3 pr
components.76’l70’171 Bonds as, e.g,, in TIH or T, are therefore
destabilized by SO effects. The p3/53/, spinor forms only a 7
component and thus the bonds of BiH and Bi, are not destabilized
by SO effects.

Further support for the modeling of only the DC Hamiltonian
can be obtained from, for example, molecular DHF/DC(+G)
calculations for the group 14 tetrahydrides by Visser et al.'%
The results for bond lengths and binding energies are listed in
Table 2. Here it is essentially only the one-particle (Dirac)
relativity which significantly influences the results. It was
pointed out by Dyall in a related study of the group 14 di-
and tetrahydrides, that first-order perturbation theory including
only mass-velocity and Darwin terms is sufficiently accurate
only up to Ge (Z = 32)."°”"7? In case of the tetrahydrides the
relativistic bond length contractions obtained in first-order
perturbation theory based on a nonrelativistic HF solution
and by using the Dirac—Coulomb Hamiltonian at the DHF level
agreed within 0.002 A, whereas the relativistic corrections to the
harmonic (a; breathing) frequencies evaluated by first-order
perturbation theory are overestimated by about 2, 4, and
22 cm™* for GeH,, SnH,, and PbH,, respectively, corresponding
to relative errors of up to 80% for PbH,. The XH, — XH, +
X, HF reaction energies derived from first-order perturbation
theory are too large by 0.2, 3.4, and 13.3 kcal/mol for X = Ge, Sn,
and Pb, respectively. In view of errors due to finite basis sets or
incomplete correlation treatments it appears to be safe to neglect
the two-particle (Breit, modeled here by Gaunt) contributions.
However, since the inclusion of terms beyond the DC relativity
today is straightforward and routine in atomic finite difference
calculations needed to generate AE reference data for ECP
adjustments,*® these terms are included in modern ECPs and
even may become important for accurate calculations of atomic
and molecular excitation energies.'*>'7*~17%

As it is the case for all first-principles calculations electron
correlation effects are important in ECP calculations when
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electron pairs are formed, for example, when bonds are formed or
broken. If accurate valence correlation energies can be obtained
with PPs and MPs is discussed in section 9.3. Of special interest
in ECP schemes using large cores are static and dynamic core-
polarization effects, that is, polarization of the spherical core
occurring at the HF level, as well as by core—valence correlation
effects. Meyer and Rosmus demonstrated in ab initio pair-natural
orbital coupled electron-pair (PNO-CEPA) AE calculations on
the hydrides LiH—BH and NaH—AIH that core—valence corre-
lation may affect bond lengths, vibrational frequencies, dipole
moments, etc, as strongly as valence correlation.}”®!”” The
computational effort to account for these effects explicitly how-
ever was found to be high, so that it was proposed to include
them only implicitlgr bgr means of an effective core polarization
potential (CPP)."”>'”” At the two-valence-electron correlated
AE level it was found that, for example, core—valence correlation
shortens the bond distance of K, by 5.1%, and increases the
binding energy, vibrational frequency and ionization potential by
2.1, 9.5, and 8.8%, respectively.'”” The CPP approach can be
adapted to ECP schemes,"®® which will be further discussed in
section S.5.

5.VALENCE-ONLY MODEL HAMILTONIAN FOR ATOMS
AND MOLECULES

In ECP methods, we seek an effective valence-only (VO)
Hamiltonian for n, valence electrons treated explicitly in the
calculations and N cores, that is,

Hy = Y () + Y &) + Vap + Ve (54)
i i<j

The subscripts ¢ and v refer to core and valence, respectively. hy
and g, denote effective one- and two-electron operators. XA/CPP isa
core-polarization potential (CPP), further described in section
5.5, and V represents the repulsion between all cores and nuclei
of the system. For a neutral system, , is obtained from the total
number of electrons n by subtracting the number of core
electrons n,, that is, the difference between the nuclear charge
Z, and the core charge Q; for every core 4

N

nV:n—nC:n—Z(Zi—Q,l) (Ss)

A

Nonrelativistic, scalar-relativistic as well as quasi-relativistic ECPs
use a valence-only model Hamiltonian which is formally of
nonrelativistic form, that is,

) =~ 28+ V) ad 36 =~ (56)

ij
If we neglect VCPP and V. in eq 54 for a moment, it is usually
assumed that all relativistic contributions can be folded into the
Hamiltonian by means of parametrization of the ECP V, and
that the nonrelativistic kinetic energy operator as well as the
nonrelativistic Coulomb interaction between the electrons
suffices.

Two main branches of ECPs may be distinguished, that i,
model potentials (MPs), which try to model as accurately as
possible the AE (HF) potential for the valence electrons and thus
produce valence orbitals with a correct nodal structure, and
pseudopotentials (PPs), which after a formal transformation
from the valence orbitals to pseudovalence orbitals with a
simplified radial nodal structure lead to further savings in the

one-electron basis sets. Since nowadays PPs are more popular
than MPs we will focus in the current review somewhat more on
the former type of ECPs. In both PP and MP approaches it has
also been attempted to include relativistic terms explicitly, that is,
the Dirac one-particle Hamiltonian eq 10 in the context of
PPs'*"'** (section 6.6) or the DKH Hamiltonian eq 27 in the
context of MPs"® ™" (section 7.4).

Besides relativistic contributions the ECP V, has to account for
all interactions of the valence electron with the nucleus and the
(removed) core electron system, as well as for (the absence of
explicit) core—valence orthogonality constraints. The leading
term for an atom is the Coulomb electron—core attraction, that is,

N 5

Voli) = — o + AV (i) (57)

1
In case of a molecule it is usually assumed that the ECP Vo simply
is a superposition of N atomic contributions

7uli) = % -2y avio) (58)

This assumption is the basis for the atomic adjustment of the valence-
only model Hamiltonian parameters, which is essential for the
efficiency of the approach. Considering various core definitions for
each element, various AE approaches to generate the reference data
and also various methods to adjust the ECPs there are already a
significant number of possible parametrizations for each of the ~120
chemical elements. A molecular adjustment would require parame-
trizations for (at least) the much larger number of pairs of elements.
In addition, in the atomic adjustment finite difference methods, or at
least very large one-particle basis sets, can be applied and guarantee a
basis set independence of the derived parameter sets, which would be
less straightforward to achieve in a molecular adjustment.

V.. may be written as the leading point charge Coulomb
repulsion between cores/nuclei and, if required, pairwise additive
corrections accounting for deviations from the point charge
approximation (section $.6:

N
Ve = Y l% + AVfg‘(%)] (59)
A<u Thu
The corrections AV account, for example, for mutually pene-
trating cores, where besides modified electrostatic contributions
also orthogonality constraints and the Pauli-repulsion between
the electron shells localized on different cores has to be taken into
account. These corrections are usually only required for those
special cases where large ECP cores are used. Since large-core
ECPs are often not too well transferable between different
systems and thus have only a limited range of usage, the
corrections have to be derived only for the few cases under
consideration. We note that VCPP has both atomic as well as
molecular contributions, however, the latter evolve automatically
as products of atomic terms and thus do not need to be adjusted
separately for the molecular case (section S.5).
Unless otherwise noted we will consider in the remainder of
this article a VO model Hamiltonian of the following form:
o 1y 1
H, = — 12 Vi + Y —
245 i<jlij

n, N
+XX {—% + Af/ﬁv(i)] + Vep + Ve (60)
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The main task for the ECP development is to find an analytical
form for AV, as well as for VCPP and V., which is sufficiently
accurate and at the same time easily applicable in practical
calculations.

5.1. Underlying Approximations

A number of severe approximations has to be made in order
to arrive at a computationally practical VO scheme using the
Hamiltonian eq 60. These are related to the choice of
the operators h, and g,, as well as the one of VCPP and V..
To compensate for the errors resulting from the underlying
approximations the effective VO Hamiltonian usually contains
free parameters in AV, VCPP, and V_, which can be adjusted to
reproduce as accurately as possible AE or experimental refer-
ence data. In a series of papers, Schwarz analyzed carefully the
various approximations and consequences underlying the PP
approach.'® 19

First of all one has to separate the core and valence electron
systems. The exact quantum mechanical partitioning of many-
electron system into independent subsystems is not feasible,
but it can be achieved approximately within an indegendent—
particle picture, for example, at the HF level, 191?315 where
groups of (localized) orbitals can be used to define, for example,
the core and valence electron subsystems. Whereas the core—
valence separation is exact at the independent-particle level, it is
not for the exact wave function. Although the core systems as
well as the valence system can still be described separately at a
correlated level, core—valence correlation effects have been
neglected. Clearly, the assumption of valence-only methods is
usually that core correlation effects can safely be omitted for the
problems of interest. In case of core—valence correlation either
the same assumption is made or it is attempted to describe the
effect by constructing suitable effective operators, which may be
added to the valence-only Hamiltonian. CPPs (section 5.5),
which were initially used in AE calculations to take dynamic
core—valence golarization, that is, core—valence correlation,
into account'’®'”” are now quite popular especially in large-
core PP methods.'**'*>~1%7

Second, one has to assume that the atomic cores are inert and
remain unchanged when they are transferred from one system to
another. When describing the core electron systems within the
independent-particle approximation this corresponds to a freez-
ing of the core orbitals for a special state, for example, in their
atomic ground state situation, and using them unchanged for all
others, for example, also for molecules. The underlying frozen-
core (FC) approximation'®? is an assumption made in all VO
schemes. Clearly, the size of the core is an important factor for
both the accuracy (small cores preferable) as well as the efficiency
(large cores preferable) of the VO approach. Here chemical
intuition is usually not sufficient to find the best compromise, and
rather results of AE FC calculations provide useful hints as
outlined in section 5.2. In addition to dynamic core-polarization,
that is, core—valence correlation, CPPs (section 5.5) can also be
used to account to a certain extent for static core-polarization, for
example, correct for the FC errors in VO schemes.

Third, to really eliminate the core electrons and possibly also
core orbitals from the calculation one has to replace their
contributions in an AE FC Hamiltonian for the valence electrons
by an ECP modeling the real nonlocal HF potential. Often it is
assumed that the ECPs are just atomic effective one-electron
Hamiltonians entering h,, which may be cast into a computa-
tionally convenient analytical form with adjustable parameters,

also allowing for an implicit treatment of relativistic contribu-
tions. Molecular ECPs are usually constructed as a superposition
of the atomic ECPs. At the stage of the construction of the atomic
ECPs most of the differences in the various ECP (MP and PP)
schemes arise. Details will be discussed for PPs in section 5.3 and
for MPs in section 5.4

A brief explanation of the nomenclature used here and in
previous reviews”>>”**3"1% is in order, since during the almost
eight decades since the work of Hellmann”? various authors used
different names for their approaches. We hereby assume that one
wants to model HF AE results for the valence electron system,
which is the main topic of this review. The MP approach attempts
to construct analytical effective potentials modeling directly the
original nonlocal HF potential for the valence electrons in
orbitals which have the full nodal structure of the AE valence
orbitals. It originates from the Huzinaga—Cantu equation'” and
could be referred to as a “model HF potential approach”. The PP
approach in practice tries to construct analytical effective poten-
tials modeling the nonlocal HF potential for (nodeless) pseudo-
valence orbitals, that is, orbitals which after a formal trans-
formation still yield the correct orbital energies, but have a
simplified radial nodal structure. The method is (formally) based
on the Phillips—Kleinman equation®” and could be referred
to as a “model HF pseudopotential approach”. Thus, both
approaches belong to effective core potential (ECP) methods.
In order to keep the nomenclature simple, we use the terms
model potential (MP) and pseudopotential (PP) in context with
ECP approaches using valence orbitals with the correct and with
a simplified nodal structure, respectively. The nomenclature used
here is consistent, for example, with the one used by Seijo and
Barandidran.”* We note here in passing that the MP approach is
more general than just being a variant of the ECP method, since it
can also be used to model environments of a group of atoms of
interest, for example, the environment of embedded clusters in
solid state physics.'**>°!

Fourth, ECP methods often assume that the atomic cores of a
system do not interact with each other except for their mutual
Coulomb repulsion, however, for very large cores this assump-
tion of a simple pairwise Coulomb repulsion might be too crude.
Mutually “penetrating” or “overlapping” cores need to be ac-
counted for by additional pairwise additive corrections modeling,
for example, the exponentially decaying Pauli repulsion between
closed shell cores (section 5.6).

5.2. Size of the Core

One of the most important decisions to be made when
constructing an ECP besides the choice of the reference data is
the choice of the size of the core. Large cores are attractive since
they lead to large computational savings, whereas small cores
allow a higher accuracy to be reached. Of course, when relativistic
contributions are implicitly taken into account as it is the case for
most ECP approaches, too small cores may also lead to errors
since the nonrelativistic kinetic energy together with a relativis-
tically parametrized ECP might not correctly describe the
relativistic kinematics. Thus a compromise is needed. Hereby
one has to have in mind which system should be modeled and
what method should be applied to it. For example, whereas for
the treatment of middle-sized Hg, (n < S5) clusters, the Hg atom
may be modeled as a two-electron system,*”> one would rather
use a more reliable 20-electron Hg ECP in order to obtain an
accurate potential curve for Hg, at the CCSD(T) level*** 2%
However, if instead of CCSD(T) one uses the QMC approach,
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Table 3. Relative Dirac—Hartree—Fock (DHF) Energies
(eV), Obtained with the Dirac—Coulomb (DC) Hamiltonian,
of the 2] + 1-Weighted Avera%e of All ] Levels Belonging to a
Nonrelativistic Configuration® with Respect to the Value for
the C 2s> 2p” and Pb 6s” 6p” Ground State Configurations®

C Pb

ECE

DHF/DC FCE4ve DHF/DC 4ve 14ve 22ve

M+ 144.224 0.027 89.837  1.586 0.070  0.002
s' 79.841 0.007 49239  0.580 0.018 0.000
p' 87.924 0.002 60.021  0.882 0.042 0.001
s> 34.039 0.003 19387  0.110 0.002 0.000
s' P 40.339 0.000 28.017 0247 0.009 0.000
p> 50521 0.001 38674 0467 0027 0.000
s p' 9.995 0.000 6.159 0017 0.000 0.000
st P 18.035 0.001 14.640  0.092 0.006 0.000
P> 28994 0.005 25.116 0249 0.020 0.000
$ P’ 0.000 0.000 0.000  0.000 0.000 0.000
st p’ 8.786 0.002 8271  0.038 0.005 0.000
pt 20253 0.006 18516  0.156 0.018 0.000
ma.e. 0.004 0369 0.018 0.000

“ The frozen-core errors (FCE; eV) in the relative energies are given for
4, 14, and 22 valence electron (ve) systems. The frozen core was taken
from the neutral atom in the ground state configuration. The mean
absolute errors (m.a.e.) are listed in the last line.
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Figure 9. Orbital densities for Ti ([Ar] 3d” 4s) from multiconfigura-
tion Dirac—Hartree—Fock calculations with the Dirac—Coulomb
Hamiltonian using the program GRASP.** The Ti'** (Ne-core; small-
core ECPs) and Ti*" (Ar core; large-core ECPs) densities are also plotted.

the treatment of Hg as a two-electron system using a PP becomes
attractive again.zo6 Also, when using plane-wave basis sets a large
core is computationally desirable, whereas Gaussian basis sets in
principle also treat small cores very well.

Results of AE FC HF or DHF calculations provide a good
impression of the errors which result for a specific size of the core.
Using standard atomic codes®”*"**'%® these can be routinely
carried out at the finite difference level. It has to be noted,
however, that additional FC errors arise at the correlated level.
Table 3 lists the frozen core errors for C ([He] core) as well as Pb
([Xe] 4f'* 5d"°, [Xe] 4f", and [Kr] 4d"® 4** cores; see also
Figure 2). When treating C and Pb according to the chemical
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Figure 10. Orbital energies for Ti ([Ar] 3d” 4s”) and Ce ([Xe] 4f' 5d" 65°)
from multiconfiguration Dirac—Hartree—Fock calculations with the
Dirac—Coulomb Hamiltonian using the program GRASP.® In some
cases the SO splitting is too weak to be resolved. Note the logarithmic
y-axis.

intuition as four-valence-electron systems the FC errors are
below 0.03 eV for C, but may amount to more than 1 eV for
Pb. The reason is the larger radial overlap of the Pb 6s and 6p
valence orbitals with the Pb’®" core shells, especially the diffuse
Sd shell. Including 5d to the valence space, that is, treating Pb as a
14-valence-electron system, reduces the FC errors to 0.07 eV or
less. Negligible FC errors far below 0.01 eV are found when the
Ss and Sp shells are also included in the valence space and Pb is
treated as a 22-valence-electron system. Thus, the treatment of all
elements of a column of the periodic table on equal footing by
ECP methods will not always lead to the same accuracy. More
than one choice of the core is possible for heavy elements and the
related accuracy has to be further investigated. When selecting an
ECP core one also has to take into account, for example, that not
all configurations listed in Table 3 are of equal importance for
chemical problems.

Transition metals are more complicated than main group
elements, since their (n—1)d and ns valence orbitals have two
different main quantum numbers and thus also a different radial
extension. Figure 9 shows that the Ti 3d radial density maximum
is located roughly at the positions of those of the closed-shell 3s
and 3p semicore orbitals. Although these have a considerably
lower orbital energy, see Figure 10, they have to be included in
the valence shell to avoid large frozen core errors. Note that a
change of the Ti 3d occupation by one electron changes the
effective nuclear charge for the more diffuse Ti 4s orbital also by
roughly one unit. To a lesser extent also the 3s and 3p shells feel a
change of the effective nuclear charge. Thus, when performing
the core—valence separation on the basis of energetic criteria
(orbital energies) and freezing the 3s and 3p shells, that is,
treating Ti as a four-valence electron system, one observes FC
errors which depend on the 3d occupation number. Table 4
shows that the FC errors can amount to more than 1 eV.
However, when using spatial criteria (radial orbital and core
densities) one is led to include the 3s and 3p shells in the valence
space, that is, to treat Ti as a 12-valence electron system. The
corresponding FC errors are now at most 0.02 eV, which is
acceptable for most chemical investigations. Besides the Ar and
Ne cores a Mg core is also included, since corresponding core
definition are sometimes also used,'>”?%”"2!% see sections 6.4,
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Table 4. Relative Dirac—Hartree—Fock (DHF) Energies
(eV), Obtained with the Dirac—Coulomb (DC) Hamiltonian,
of the 2] + 1-Weighted Avera%e of All ] Levels Belonging to a
Nonrelativistic Configuration'*® with Respect to the Value for
the Ti [Ar] 3d” 4s> Ground State Configuration”

FCE
DHE/DC 4ve 10ve 12ve
Ti* 86.261 3.320 0.393 0.021
st 53.741 2.498 0.248 0.001
> 30.370 1.972 0.172 0.001
d' 44.064 0.702 0.063 0.000
d' st 22.131 0.474 0.043 0.000
d' s> 8.319 0.357 0.037 0.000
a2 18.558 0.018 0.002 0.000
a2 st 5.838 0.003 0.000 0.000
a2 §* 0.000 0.000 0.000 0.000
& 6.952 0.152 0.037 0.000
& st 1.743 0.116 0.022 0.000
a* 5477 0.206 0.045 0.000
ma.e. 0.893 0.097 0.002

“ The frozen-core errors (FCE; eV) in the relative energies are given for
4, 10, and 12 valence electron (ve) systems. The frozen core was taken
from the neutral atom in the ground state configuration. The mean
absolute errors (m.a.e.) are listed in the last line. The DHF/DC results
for 4s* and 3d? relativistic contribution, and FC errors were inter-
changed in the original publication.'”®
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Figure 11. Orbital densities for Ce ([Xe] 4f' 5d' 65>) from multi-
configuration Dirac—Hartree—Fock calculations with the Dir-
ac—Coulomb Hamiltonian using the program GRASP.** The Ce***
(small-core ECPs), Ce'>" (large-core ECPs), and Ce*" densities are also
plotted. For reasons of clarity the 4s, 4p, 4d (maxima near the 4f
maximum), and Ss, Sp (maxima near the Sd maximum) densities have
been omitted.

7.1, and 7.2. Although a Mg core is significantly more accurate
than the Ar core, errors of a few tenths of an electronvolt have to
be expected.

The most complex systems to model are lanthanides and
actinides. Here the (n — 2)f, (n — 1)d, and ns valence shells have
three different main quantum numbers and radial density max-
ima at different distances from the nucleus. Figure 10 implies that
one could try to treat Ce as a four-valence electron atom, whereas

Figure 11 reveals that this will not lead to an accurate approx-
imation. On the basis of energetic criteria only 4f, 5d, and 6s are
the valence orbitals of Ce, that is, the explicit treatment of only
four valence electrons in accord with chemical intuition is
implied. Table 5 however shows that FC errors of up to several
eV render this approach quite useless. Figure 11 shows for the
Ce 4f' 5d" 6s” ground state configuration that the open 4f shell
is buried deeply inside a Ce'*" core, whereas the open 5d shell is
still more compact than the Ce*" core. The closed $s and Sp
semicore shells have their maxima close to the one of 5d and at
larger distances from the nucleus than 4f, whereas the 4s, 4p,
and 4d shells have their maxima near the one of 4f. Using the
same arguments as applied for Ti above, changes of the 4f
occupation number modify the effective charges for Ss, Sp, 5d,
and 6s but also to a lesser extent for 4s, 4p, and 4d. In addition,
changes of the 5d occupation number alters the effective charge
for 6s but also to alesser extent for Ss and Sp. As a result the FC
errors for a Ce*" core depend on the 4f occupation, and to a
lesser extent also on the Sd occupation. For a Ce'*" the
dependency on the 4f occupation is still noticeable, whereas
the one on the 5d occupation is of minor importance. Finally a
high accuracy with ne%Iigible FC errors below 0.01 eV is
reached for a small Ce®*" core, that is, when all shells with n
> 4 are considered in the valence space. A similar situation is
present for actinides, see, for example, corresponding tabula-
tions for Th* or U.*° It is thus strongly advocated to motivate
the core—valence separation in ECP methods on the basis of
spatial rather than energetic criteria.

Table S also shows that the errors of energy differences
between configurations with the same Ce 4f occupation are
relatively small. This was the motivation to derive PPs for
lanthanides and actinides including the open f shell into the
core. These unusual PPs will be discussed in section 6.1.3 in more
detail. Table 4 suggests that PPs for transition metals including
the open d shell into the core could also be considered. In fact
such PPs were used to model the environment of finite cluster
calculations of, for example, for Ni** 3d® in NiO.*"!

5.3. Pseudopotentials

In the following sections, the basic ideas and equations
underlying the pseudopotential (PP) approach and the com-
monly used analytical forms of the PP valence-only (VO) model
Hamiltonian will be briefly reviewed. The methods of PP
parametrization for those PP approaches which are still actively
used by a wider community or which are currently further
developed will be discussed in section 6. Several points discussed
here for PPs also apply to the model potential (MP) approach,
which is described in sections 5.4 and 7.

5.3.1. Generalized Phillips—Kleinman Equation. One of
the first PPs was proposed by Hellmann already in 193S$ for a
semiempirical treatment of the valence electron of potassium.”>
A rigorous theoretical foundation of PPs was provided only
more than 20 years later by Phillips and Kleinman in 1959, who
derived within an effective one-electron framework for the
calculation of wave functions of crystals and molecules the so-
called Phillips—Kleinman (PK) equation.”® Another decade
later Weeks and Rice presented in 1968 the generalized PK
(GPK) equation,”*"* which provides a first general prescription
for the construction of a PP from an (effective) Hamiltonian
and its eigenfunctions. Although the use of the (original) PK
and GPK formalisms leads in practice not to accurate PPs and
the analytical forms of modern PPs do not have much in
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Table S. Relative Dirac—Hartree—Fock (DHF) Energies (eV), Obtained with the Dirac—Coulomb (DC) Hamiltonian, of the 2] +
1-Weighted Average of All J Levels Belonging to a Nonrelativistic Configuration”” with Respect to the Value for the Ce 4f' 5d" 6s”

Ground State Configuration”

FCE

DHF/DC 4ve 12ve 30ve

Ce* 68.115 5.037 0.466 0.002
st 42.873 3.872 0.427 0.002

$* 24.654 3.104 0.400 0.002

d' 38.662 2911 0.408 0.002
d' s' 21.087 2312 0.385 0.002
d! st 9.909 1.965 0.371 0.002
a2 18.900 1.648 0.381 0.002
d st 8254 1.420 0.370 0.002
d s 3.231 1330 0.364 0.002
& 7.881 1.034 0.376 0.002
& s' 3234 1.013 0.372 0.002
d* 4322 0.845 0.384 0.002

FCE

DHF/DC 4ve 12ve 30ve

f! 33273 0.416 0.001 0.000
£ st 16.313 0.198 0.000 0.000
£ $ 5.592 0.094 0.000 0.000
f! d' 14.981 0.046 0.000 0.000
f d' s' 4767 0.007 0.000 0.000
f! d! s* 0.000 0.000 0.000 0.000
£ 42 5.107 0.039 0.001 0.000
f a2 st 0.661 0.037 0.000 0.000
f & 2210 0.104 0.001 0.000
ma.e. 0.000 1.306 0.224 0.001

“ The frozen-core errors (FCE; V) in the relative energies are given for 4, 12, and 30 valence electron (ve) systems. The frozen core was taken from the
neutral atom in the ground state configuration. The mean absolute errors (m.a.e.) are also listed.

common with the PK or GPK PPs, it is instructive to review
these in order to rationalize the assumptions and approxima-
tions underlying the PP schemes.

We start with an (effective) one-electron Hamiltonian H.g,
and imagine that there is only one upper energy eigenfunction
|+, which we will call the valence (v) eigenfunction, and several
lower energy eigenfunctions |¢.), which we will call core (c)
eigenfunctions

(61)

We further assume that all eigenfunctions are orthonormal, that
is,

Heff|%> = &|Q,),a € {vc}

(@@, = Oua, a, de {v,c} (62)

Now one may define an arbitrary, normalized function |¢,),
which is later called a pseudovalence orbital, as a linear combina-
tion of the valence and core eigenfunctions

0y = Np(loy) + XY acloo) (63)

Using the orthogonality constraints eq 62 between the |¢.) and
|@,) we can evaluate the coeflicients a, as

a. = Ny Yoo, (64)

Solving eq 63 for |¢,), using eq 64 to replace the coefficients a.
and substituting with the resulting expression |¢,) in eq 61 yields
after multiplying with the normalization factor N,

Heff|(pp> - Z €c|<Pc><€0c‘(Pp>

= &[lo,) — XloXod o) (65)

Introducing the so-called Phillips—Kleinman (PK) “potential”
[PK

VI = ¥ (e — &)l Xod

4

(66)

420

one can rewrite eq 65 with this expression to give the so-called
Phillips—Kleinman equation”°

(Fas + V)0 = &lg,) (67)
Equations 67 and 63 imply that without changing the eigenvalue
&, the form of pseudovalence orbital |¢,,) is not unique and may
be chosen quite freely. Note that for n. core orbitals used in eq 66,
the ground state solution of eq 67 with energy ¢, is (n. + 1)-fold
degenerate.

Since V" is not a usual potential, that is, a function depending on
the position 7, it is called a pseudopotential (PP). We note that
operators we will call later PPs in addition model Coulomb and
exchange operators included in H g in eq 67. It is also important to
note that the operator V" is energy-dependent because it depends
on &, and all £, and it is nonlocal because it depends on all |q)c>.
Note that the PK Hamiltonian implicitly takes care of core—
valence orthogonality conditions and that one can use any arbitrary
trial wave function |, in a variational procedure to approach &,
from above, without danger to collapse to the core energy levels. The
linear combination eq 63 may be used to eliminate from |¢@,) the
radial nodal structure arising from core—valence orthogonality con-
straints, yielding a smooth and nodeless pseudovalence function |¢,,)
with low basis set requirements. We prefer to use for |¢,,) the term
pseudovalence orbital, instead of the frequently used term valence
pseudo-orbital, since |¢,,) fulfills all requirements for a legitimate
orbital. Unfortunately, the construction of the PK potential requires
the knowledge of |) and €, (a € v,), that is, the full problem still
has to be solved and thus no computational savings arise so far.

In 1968, Weeks and Rice generalized the PK PP formalism to
cases where more than one valence electron is present.>*'?
Moreover, in their formalism, only |¢,) is required to be an
eigenfunction of the (effective) one-electron Hamiltonian H.g,
whereas the |¢.) are not. As a start one may assume eq 61 only to
hold for a valence orbital |¢,) and act from left with a projector P,
on the orthogonal core orbitals

P = Y loXod (68)

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480



Chemical Reviews

leading to

(1 - pc)Heff‘q)v> = 8v|§0v> (69)

Expressing the original valence orbital |p,) in terms of its
pseudovalence counterpart |@,,) eq 63, that is,

lp,) = N ' (1= Po)|o,) (70)

one obtains from eq 61 a pseudo eigenvalue problem for the
pseudovalence orbital |p,,):

(l_ﬁc)ﬁeff(l_f)c)l(Pp) = ev(l_ﬁc”(pp) (71)

Defining the so-called generalized PK (GPK) PP VS as the
following nonlocal, energy-dependent effective one-electron
operator

VK — _ fP.— P.Hg + P.HygP. + &P, (72)

the GPK eigenvalue equation for a pseudovalence orbital is
obtained

(Her + VE)py,) = &loy) (73)

In case that the |qoc> are also eigenfunctions of H,5 VK

reduces to V. Equations 66 and 67 or eqs 72 and 73 do not
bring about any computational savings compared to eq 61, but
rather consist of a rewriting of the original AE problem in a
quite complicated form. Thus, the PK and GPK equations
prove that in principle one can get the same answer as from an
AE calculation by working with a suitable effective valence-only
Hamiltonian and pseudovalence orbitals with simplified
radial nodal structure. The importance of the PK and GPK
approaches does not result so much from the explicit prescrip-
tions they provide for performing valence-only calculations, but
rather from the ideas and suggestions they imply for setting up
computationally more efficient as well as also more accurate ab
initio valence-only approaches.

As already stated by Cohen and Heine in 1961, neither the
pseudovalence orbitals constructed according to eq 63 nor the
corresponding pseudopotentials are unique.”'* At this point
essentially two approaches to eliminate the nonuniqueness
originate. One possibility is to choose a potential with a
physically reasonable analytical form and to optimize the free
parameters in this potential so as to fit experimental or AE ab
initio reference data. A typical early example is the Hellmann
PP.”*> Also the energy-consistent PP approach described in
section 6.1 follows this strategy. Another possibility is to
construct by some prescription some appropriately smooth
pseudovalence orbital |,) and to generate the corresponding
(local) potential. This strategy is followed by the shape-
consistent PP approaches summarized in section 6.2. Still,
following this variant requires to eliminate the nonuniqueness
of eq 63 by adding constraints. Cohen and Heine suggested
several criteria to obtain unique and smooth pseudovalence
orbitals, among them the minimization of the kinetic energy.
Goddard and co-workers based their PPs on the nodeless and
unique valence orbitals obtained with the G1 generalized
valence-bond (GVB) approach.**2'® Later the so-called
coreless HF (CHF) PP approach was advocated.”'”*'® The
linear combination of HF orbitals |¢,) (a € v,c) in eq 63 were
fitted to a suitable Slater orbital using a weighting factor 1/r” in
order to emphasize the fit in the core region. CHF PPs have
been generated for K through Zn in 1978, however at that

time the exact obedience of the PK prescription eq 63 was
already shown to lead to errors."*#***~*** For a recent attempt
to explicitly apply PK theory as well as additional references to
previous work in this field we refer the reader to articles by
Schwartz and co-workers.”*****

So far, the derivation and subsequent application of the PPs
could be carried out on a grid. However, in order to become
computationally efficient also for molecular calculations the
PPs have to be cast in some analytical form, which can be
handled by standard quantum chemistry codes using, for
example, Gaussian basis sets.”’®*!” The analytical form used
nowadays, that is, the semilocal ansatz (vide infra), has only
little in common with the original PK and GPK PPs. It was
pointed out already by Weeks and Rice that the advantage of the
PP formalism lies not so much in the formally exact solution of
the problem but rather in the physical insights it provides and
the models it suggests.”"> The main result is that it is possible in
principle to find a potential that, when added to a Hamiltonian
acting only on the valence electrons, allows the variational
solution of the corresponding Schrodinger equation without
variational collapse to core-like solutions. Moreover, the pseu-
dovalence wave function in this formalism does not need to take
into account explicit orthogonality requirements to the core-
part of the original wave function and thus can be described
with smaller basis sets.

5.3.2. Analytical Form of Pseudopotentials. Nonrelati-
vistic and Scalar-Relativistic Pseudopotentials. In 1935, Hell-
mann proposed in a one page letter to treat potassium as a one-
valence electron atom in quantum chemical calculations by using
a simple (local) potential acting on the valence electron,”” that is,

o 1 274
VCV( r) = VPP(r) = 7; + Te 1.16r

(74)

Hellmann used W ~ exp(—0.29r) as an approximate corre-
sponding eigenfunction and adjusted the free parameters to the
valence energy of the K 4s* %S ground state. Further, using the
Heitler—London ansatz*** Hellmann performed the first molec-
ular PP calculations. He obtained for K, a bond length of 4 A
(exp. 3.9 A) and recovered 37% of the experimental binding
energy. However, soon it was found that simple r-dependent
spherical PPs are not accurate enough for atoms containing
valence orbitals of various angular syrnmetries,né’227 for exam-
ple, one can prove that the experimentally’*® observed ordering
of the (n — 1)d" ?D states below the np' 2P states of alkaline earth
ions Ca*, Sr*, and Ba" cannot be obtained with a local PP ansatz.

Starting with the work of Abarenkov and Heine in 1964/
572923 in the framework of semiempirical semilocal energy-
dependent (model) PPs for solid state physics applications an
increasing number of researchers took besides the r-dependency
also a I-dependency into account, that is, a dependency of the PP
on the angular momentum quantum number . Such a r- and
l-dependency is already suggested in the PK pseudopotential
eq 66, for example, when core orbitals of different [ are present.
The idea of Abarenkov and Heine was a few years later
introduced to %uantum chemistry by Schwarz'®® as well as Kahn
and Goddard.>*' Assuming a superposition of PPs as indicated in
eq 60 the so-called semilocal PP ansatz for a core A may be
written as

l
AV () = AVp(i) =

Il
8

Vi ()P (i) (75)

0
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with the angular momentum projection operator based on
spherical harmonics |Im,A) with respect to core |

m=1
ﬁf(l) = _z: l|lm,ﬂ.)(lm,i| (76)

For | = L, where typically (L — 1) is the largest angular momen-
tum used by the core orbitals on center A, the PPs V'll(r,-l) are
only slightly different,'® that is,

VHra) = VH(rg) for1 = L (77)

In general, if we assume Vi(ry) = Vi(ry) for | = L, we can use the
closure property of the projection operators to write the
expression

AVE() = Vitw) + 3 Vi) - ViR (79

The operator AV{EP in eq 78 is a so-called semilocal PP, that is, it
mainly consists of a sum of local potentials V}l(m) acting on each
angular momentum symmetry 0 < [ < L — 1 separately up to a
maximum angular momentum L — 1 present in the core A,
beyond which a common local potential Vi(m) acts on all
angular momentum symmetries [ > L.

Relativistic Pseudopotentials. Relativistic effects have not
been considered in the above description of the PP approach so
far. The preferred pseudovalence orbitals have by construction
no oscillations and only low function values in the spatial core
region. Therefore, in contrast to MPs, it is not possible to
generate accurately direct relativistic contributions by relativistic
AE operators, which are mainly acting in the core region,lsg’162
and modified relativistic operators have to be constructed.
However, indirect relativistic effects cause a modification of the
effective potential seen by the valence orbitals, an effect which
easily can be accommodated by the ansatz used in the non-
relativistic case so far. Luckily, the same is true for the direct
scalar-relativistic contributions, and thus PPs taking only into
account scalar-relativistic effects can be constructed and used
essentially along the same lines as in the nonrelativistic case,
merely requiring a change of the AE reference data used for their
construction. Kahn, Hay, and Cowan described, in 1978, the first
derivation of a scalar-relativistic ab initio PP for the U atom”**
based on atomic CG HF AE calculations.®

The inclusion of SO interaction makes some modifications of
the analytical form of the PPs necessary. The basic concept used
today in most relativistic ab initio PP approaches was already
formulated in the work of Animalu in 1966, who extended
the semiempirical semilocal energz—de endent (model) PP
approach of Abarenkov and Heine**”**° to a corresponding
two—comgonent formalism for investigations in solid state
physics.>*® In quantum chemistry relativistic, that is, two-com-
ponent, PPs were first published at the same time by Hafner and
Schwarz”** at the semiempirical level and independently by Lee,
Ermler and Pitzer™* at the ab initio level. The analytical form of
such relativistic PPs will be described in the following.

In a description of an atom at the nonrelativistic Hartree—
Fock level (HF) all orbitals belonging to a shell with main
quantum number n and angular momentum quantum number /
are degenerate, thus leading to a semilocal PP with a [-depen-
dence by means of a projection operator Pf based on spherical
harmonics. At the relativistic Dirac—Hartree—Fock (DHF) level
the degeneracy is reduced and depends in addition to n and [ also

on the total angular momentum j of the orbital (or spinor),
implying a semilocal PP with a /j-dependence

=0 j=l+1/2

Y ViraPi)  (79)

1=0 j=|I—1/2

1
Ava(i) = AV%p(i) =

by means of the projection operators f)f} set up with spinor
spherical harmonics |ljm,A) with respect to core 4

m=j

Z |ljm) lxl]m)M (80)

m= —j

Pi) =

Jj

Similar to the nonrelativistic case AVip may be approximately
written as

=L—1j=1+1/2

) V,;.l(r,-i)—VLi](r,;)f)ﬁ(i) (81)

1=0 j=|l—1/2

I
A A
AV (i) = VL] +

Note that

Pi(i) = 2_137}(0 = 13;1,\171/2\(") + f)f,zﬂ/z(") (82)

and

1

A
Vi) =5

[ZVII}U— 1/2|(ri/1) + (I + I)VZ?H 1/2("1’/1)} (83)

The relativistic PP in eq 81 may thus be rewritten as the sum of a
spin-free averaged (av) and a spin-dependent (so) term>>¢

A‘??’P(l) = A‘AII/EP,alv(i) + A‘A/?’P,soo-) (84)
where
. Lo YAV (ry) oo .
AV ) = % S gt ) 1+ DB 00

S+ 1
(85)

Here AV} is the difference between the corresponding relativistic
PPs

AV} (rz) = Vi1, 1a(ra) — Vz,ﬂuf 1/2/(ri2) (86)

AV%P@V is a scalar-relativistic PP, that is, without inclusion of SO
coupling, and it corresponds to AVtp defined in eq 78 if the
difference between Vf](m) and Vi(ry) is neglected.®>® The
AV%P,SD is called a SO PP. A simpler form especially suited for
use in SO configuration interaction (CI) calculations following a
scalar-relativistic HF solution was derived by Pitzer and
Winter™>’

L— IZAVIA(VM) 5

AV{;P,SO(i) = Z

el ()T, 37 (1) (87)

S

Here 7;; = a,- X [;: and 2 stand for the operators of orbital
angular momentum with respect to core A and spin, respectively.
Actually only one of the P (i) is needed because P7(i) commutes
with 7, -5; and is idempotent.”>” We note here in passing that
relativistic (two-component) PPs can be averaged and thus also
used in scalar-relativistic (one-component) calculations, whereas
the usage of a scalar-relativistic small-core PP together with a
large-core SO term, that is, a SO operator optimized only for
the valence orbitals and not for the semicore orbitals, in
fully variational two-component calculations usually leads to
errors. Although the usage of the same core definition for the
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scalar-relativistic PP and the SO term is a natural choice avoiding
such difficulties, the usage of different core definitions may be
computationally attractive, for example, one can maintain a high
accuracy by using a small-core PP approach at the scalar-
relativistic level, whereas a computationally simple perturbative
treatment with a large-core SO term can be applied to derive
multiplet splittings arising from open valence shells.

A simple although often sufficiently accurate alternative
approach to include SO coupling is the use of a scaled AE Pauli-
type SO operator

S Zii\s 5
Vsoli) = 72 — | s (88)
A i

which was originally proposed by Cohen et al.”*® The operator
eq 88 is not variationally stable, and thus its application has to be
restricted to perturbation theory based on solutions from a
scalar-relativistic calculation. The approach was used successfully
in calculations apglyin% scalar-relativistic PPs by Wadt,"*” Koseki
and co-workers,"**'*° and Heinemann et al.>*’

Gaussian Expansion of Radial Pseudopotentials. To facil-
itate calculations using Gaussian basis sets the potentials
Vf(m) — Vﬁ(m), Vﬁ 1) in the nonrelativistic and scalar-
relativistic case, and Vi(r;;) — V%](ri,l), V/Ll](ri,l) in the relati-
vistic case are usually represented by linear combinations of
radial Gaussian functions multiplied by powers of the electron—
core distance r;;,"**

VA(ra) = Y AL re i with m = 1L, 1j, 1] (89)
k

As a consequence a similar expansion results for the difference
potential AVf(m) in the SO term. The choice was made mainly
because of computational convenience and efficiency for the
further calculations, that is, the matrix elements over the PP
operators may then be readily evaluated in a Cartesian Gaussian
basis.'?***7>*972* This topic will be discussed in section 8.2.
The powers ny,, of the electron—core distance r;; were restric-
ted to the values —2, —1, and 0, because these values were
found to adequately cover the behavior of AV%p at the origin.194
Note that ng,, = —2 is also required to maintain integrability
when evaluating matrix elements.

5.4. Model Potentials

The model potential (MP) approach used for replacin% atomic
cores is another important variant of the ECP method.'®'®** In
contrast to the PP approaches discussed so far the MP approach
aims at keeping the correct nodal structure of the valence orbitals,
that is, no formal transformation to pseudovalence orbitals is
performed. Thus, conceptually the MP approach is more accu-
rate than the PP approach. Besides the advantage that untrans-
formed operators, also when acting in the spatial core region, can
in principle be applied to the valence orbitals in the MP approach,
there is the disadvantage that MP basis sets have to be larger than
the PP basis sets, in some cases reaching nearly of the size of AE
basis sets, in order to describe the shape of the valence orbitals
also in the core region correctly. Since the use of large basis sets is
not always desirable, in some older MP approaches radial nodes
were sometimes eliminated, at the same time giving up the use of
untransformed operators. It is fair to say that the MP approach
for atoms is considerably less popular than the PP approach.
Nevertheless it represents an important link between the full AE
calculation and the PP calculations, and thus it is also discussed
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here. Moreover, the MP approach has a wider scope than the PP
approach, that is, it is not restricted to construct a model
valence-only Hamiltonian for an atom exploiting its spherical
symmetry, but it can also be used to construct a corresponding
model Hamiltonian for an active part of an essentially arbitrary
system, replacing its chemically inactive subunits by a MP.'¢
This aspect of the MP approach is exploited, for example, in the
work of Seijo and Barandiaran, who on one hand use MPs to
replace the core electron system of heavy atoms, and on the
other hand use a similar formalism to model the surroundings
when embedding the heavy atom/ion in a crystalline
environment.”* In the following, we will focus only on the first
aspect of the method.

5.4.1. Huzinaga—Cantu Equation. The MP method was
originally proposed by Bonifacic and Huzinaga®* and later
improved by Sakai and Huzinaga.****** The main goal is to
model as exact as possible a Fock-type AE operator for the
valence orbitals. The method originated from the so-called
Huzinaga—Cantu equationlg9’246

He + Y(—2e)loXocll9.) = o) a € {nc}  (90)

In this equation H.g stands for an (effective) one-electron
Hamiltonian, for example, a Fock operator, and the subscripts
denote valence (v) and core (c) orbitals. The valence orbital |¢,)
and the core orbitals |¢.) are eigenfunctions of H gas assumed in
eq 61 and fulfill the orthogonality constraints eq 62. In contrast
to eq 61 the sum over projection operators onto core orbitals
|(/)C) added to I:Ieff guarantees that the eigenvalues of the core
orbitals |(pc> appear at an energy —é&, > 0 in the spectrum, that is,
at higher energies than the valence orbital eigenvalues &, which
remain at their original position. The Huzinaga—Cantu equation
resembles the Phillips—Kleinman equation, eq 67 with eq 66,
however the lowest energy pseudovalence orbital |@,) in the
latter equation does not necessarily have radial nodes, whereas
the valence orbital |¢,) in the Huzinaga—Cantu equation keeps
the correct nodal structure of the corresponding AE valence
orbital.

5.4.2. Analytical Form of Model Potentials. For the VO
model Hamiltonian eq 60, assuming the molecular potential as a
superposition of atomic contributions, a MP consisting of three
terms may be considered for an atom 4

AVA (i) = AVE, () = AVEG) + AVAG) + PAG)  (91)

Here Af/'é is the Coulomb (C) interaction between the core A
and the valence electrons

A
AVE() = — = + 23 1) (92)
iy ¢

Note that for the core A the number of core electrons n” and the
core charge Q; add to the nuclear charge Z;, that is, nf + Qi =2,
so that the correct AE core—electron interaction is kept in the
VO model Hamiltonian. AV;} represents the core—valence
exchange (X) interaction

AVL(i) = — Y KL() (93)

jé and Kf stand for the usual Coulomb and exchange operators
related to the core orbital |(pf) and the sums in eqs 92 and 93 run
over all occupied core orbitals. To prevent the valence electrons
from collapsing into the core a shift (S) operator P{ constructed
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from core orbitals centered on core A has to be included in the
VO model Hamiltonian eq 60

Py(i) = X (= 2600l (X2 ()] (94)

4

The value of —2¢? for the energy shift can be motivated for
atoms,”*” and is usually transferred to molecules as well.

For calculations using Gauss1an basis sets a basis set expansion
is used to represent the |(pc) in eq 94. The modeling of the
Coulomb and exchange terms differs, that is, whereas in the ab
initio model potential (AIMP) approach (see section 7.1) an
expansion in Gaussian functions times powers of r and a spectral
representation in a large atom centered basis set are used for the
local Coulomb (eq 92) and nonlocal exchange (eq 93) parts,
respectively, the model core potential (MCP) approach (see
section 7.2) only uses the expansion in Gaussian functions times
powers of r. Relativistic effects, including the SO effects, are
treated by the two approaches using a spectral representation of
the WB SO term and an effective Pauli-type SO operator,
respectively.

5.5. Corrections to the Frozen-Core Approximation

The formal derivations of the PP and MP VO model
Hamiltonians discussed so far assumed the core—valence separa-
tion and the frozen-core (FC) approximation. Thus electron
correlation effects, i.e., core—core correlation and especially core—
valence correlation, also called dynamic core polarization, as well
as static core polarization were not taken into account. The notion
that core-polarization plays an important role in, for example, the
atomic spectroscopy of the heavy alkaline elements, when these
are treated as one valence electron systems, is essentially as old as
quantum mechanics. Born and Heisenberg, following the classical
treatment, found that for large radial distances the 1nteract10n
energy between the valence electron and the core is —(1/2)a/r,
where o is the core dipole polarizability.*** A major problem of
this expression is the singularity at the nucleus, which was avoided
in later work by implementing suitable cutoft functions. Corre-
sponding references are given in an article by Meyer and
co-workers.'”® First applications of core-polarization terms in
molecules were reported in 1970 in the context of ECP calcula-
tions by Bardsley.”** A simple superposition of atomic terms,
leading to an overestimation of the effects, was used. A systematic
derivation of atomic interactions for many-valence-electron one-
and two-center systems was performed by Bottcher and Dalgarno,
including also higher multipole polarizability contributions as well
as nonadiabatic terms connected with the frequency dependence
of the polarizabilities.”*’

The leading contribution for core—valence correlation in an
AE CI treatment would be single excitations from the core
orbitals coupled to single excitations from the occupied valence
orbitals to the virtual orbital space. If we suppose that the
(spherically symmetric) core of an atom will not be affected
when the atom bonds to other atoms, that is, the FC approx-
imation is valid, one can just take the PPs determined separately
for each atom in the system (see sections 6 and 7) to construct
the molecular PP by means of their superposition (see eq 58).
Contributions arising from the deformation of the atomic cores
under the field of the other cores and all valence electrons in
the system, that is, static core-polarization effects, are thus
neglected. The induced error may become especially significant
for systems with large, easily polarizable cores and only a few
valence electrons, for example, for large-core PPs in case of

group 1 and 2 or 11 and 12 elements. At the AE level, starting
with spherical mutually orthogonalized cores, the static core-
polarization could be accounted for in a CI treatment by single
excitations from the core orbitals to the virtual ones. An
approximate perturbative treatment based on such a picture
of core-polarization effects has been developed by Jeung,
Malrieu and Daudey”' and was applied in PP calculations to
alkaline atoms and some of their compounds.>*"***

Since in the ECP approximation the core electrons have been
removed from the system, the above-mentioned single excita-
tions from the core cannot be performed explicitly. However
they can be taken into account in form of an effective operator
acting on the valence electrons. Therefore, a so-called core-
polarization potential (CPP) V., is frequently added to the
valence electron model Hamiltonian eqs 54 and 60. The VCPP
accounts for both static core-polarization, that is, polarization of
the core at the HF level, as well as dynamic core polarization,
that is, core—valence correlation. The method outlined below
was first developed by Meyer and co-workers in the framework
of AE calculations for alkaline elements'’®'”® and adapted
to energy-consistent large-core PPs by Fuentealba and
co-workers.'”® It has been demonstrated in PP calculations
that by including the dipole polarization of the core charge
density one can also take care of the largest part of the
core—valence correlation contributions.'”*

The electric field f;l generated at a core A by all other cores/

nuclei 1, as well as all valence electrons i in the system is given as

D o (95)

RS ) ,u/l

For a polarizable core A the dipole moment ﬂl induced by an
external electric ﬁeldJ?/'1 is

i = (%)

where 0; denotes the dipole polarizability of the core 1. We note
here in passing that according to eq 96 the application of a CPP
will also contribute to the dipole moment as well as to oscillator
strengths of a system. Of course, the core dipole polarizabilities
contribute to the overall static dipole polarizability of the system.

Figure 12 schematically shows contributions to the induced
dipole moment arising in a polyatomic molecule: the coupling of
(1) an electronic and nuclear contribution, (2) two electronic
contributions, and (3) two nuclear contributions. The interac-
tion of such induced dipoles with the external electric field yields
an expression for the CPP

RN
Pp = Zﬂ

It is obvious from eq 97 that the energetic contribution of a CPP
is not simply a sum over one-electron and one-nucleus contribu-
tions. For a two-valence electron atom like Be one could assume
that due to their Coulomb repulsion the electrons prefer to stay
at opposite sides of the core, that is, one could assume that the
angle between7; and 7, would be 77, leading to a cancellation of
the one-electron contributions by the two-electron contribution.
This simple picture demonstrates that the superposition of one-
electron terms might lead to an overestlmatlon However, it has
been shown by Gill and co-workers**® by analyzing the so-called
angle intracule that the two valence electrons in Be actually have a
preferred angle of 7r/2. Thus the average CPP contribution

%

Z oif7 (97)
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Figure 12. Schematic representation of an induced dipole moment /i at
core A arising from contributions of (1) one electron and one nucleus/core
(adapted from Fuentealba et al."*), (2) two electrons, and (3) two nuclei.

would be smaller than obtained from the superposition of one-
electron terms, but would not vanish completely.

Equation 95 strictly applies only to large distances of the
polarizing charges from the polarized cores and even diver-
ges in the limit of vanishing distances. Therefore Meyer and co-
workers'”®'”® have suggested to multiply the field f' with
a cutoff function F removing the singularities. The field at a core
A then reads as

5 Ti 2 Tua 2
f,= — L aE(a o) + ¥ Qs F(na,oF) (98)
i Ty U#r V/M

where the cutoff functions can be chosen, for example, as follows:

Flrg, o) = (1—e iy (99)
E(ru, 6f) =(1- e‘(}i’iz)"c (100)

The exponents 1, and . for the electronic and nuclear contribu-
tions are usually 1 or 2, and the corresponding cutoff parameters
(521 and 5@ can be used for the adjustment to suitable reference
data. CPPs of the type described here often accompany large-
core PPs for main group elements”>**** as well as group 11 and
12 transition metals.**®**” For the latter systems quadrupole
corrections have also been developed.”*®

The CPP ansatz of Meyer and co-workers was later also
adapted by Christiansen for the shape-consistent PP
approach.'®® Daudey and co-workers extended the CPP ansatz
by using I-dependent cutoff factors, which accounts for the
finding that the core—valence correlation, for example, for an
alkaline atom, depends on the symmetry of the valence orbital."*”
The uniform cutoft function eq 99 is replaced by

Inax )
F(rg, 0) = Y Fi(r, p}) P} (101)
=0

where P} is the projection operator eq 76 with respect to the
spherical harmonics centered at core A. For Rb and Cs the sum

was truncated at [, = 3 and a step function defined as

0 for r< ,o;1 (102)

Fl(rili p;l) = {

1 for erfl

was used for the cutoff. The parameter pfl was adjusted to the
experimental total valence energies of the lowest state in each
symmetry [. Formulas for the corresponding integrals over
Cartesian Gaussian functions were also provided. The method
was successfully applied, for example, to Rb, and Cs, in connec-
tion with one-valence-electron PPs for Rb and Cs."”’

5.6. Corrections to the Point-Charge Repulsion Model

In cases where the atomic cores are relatively compact as
compared to the valence shells, for example, the typical bond
lengths formed between a pair of atoms are so large that
the corresponding core densities do not significantly overlap,
the point-charge repulsion model is a good approximation for
the core—core interaction V. and eq 59 can be truncated after
the first term. However, if large cores are used the core—core
repulsion (CCRC) correction for “overlapping” or “mutually
penetrating” cores becomes significant, that is, the second
term in eq 59, must be included. A similar core—nucleus
repulsion correction (CNRC) has to be applied for the
interaction between nuclei of atoms treated without PPs and
centers with large-core PPs. A Born-Mayer-type ansatz proved
to be quite successful to model the pairwise repulsive correc-
tion in both cases>*%*%’

AV (1) = B (103)

The parameters can be derived, for example, directly from FC HF
calculations on pairs of atomic cores. In case of the interaction
between a core and a nucleus the parameters of AV*# can be
obtained by fitting directly to the electronic contribution to the
electrostatic potential U(r) + Q/r of the PP core multiplied by
the charge Z of the interacting nucleus. The electrostatic
potential U(r) of the core with charge Q bearing the PP is readily
accessible from atomic finite difference calculations.® Figure 13
demonstrates that the exponential decay is valid in the valence
region and also shows, that the correction is needed when
alkaline atoms are treated as one-valence-electron systems,
whereas it becomes negligible if the semicore orbitals are
included in the valence space.

6. PSEUDOPOTENTIAL PARAMETRIZATION

There are essentially two methods for the adjustment of PPs
to atomic reference data in current use, that is, the adjustment of
parameters of a suitable model Hamiltonian to total AE valence
energies simultaneously for a multitude of many-electron states
leading to energy-consistent PPs and the derivation of the PPs
from quantities defined within an effective one-electron picture,
that is, orbital energies and the shape of valence orbitals in the
spatial valence region for a specific reference state, leading to
shape-consistent PPs. In the following both schemes will be
described in some detail, whereas some other alternative
approaches will only be briefly mentioned. The analytical form
of energy-consistent PPs is essentially identical to the one of
most shape-consistent PPs. Therefore both types of PPs can be
used in most standard quantum chemical program packages
(e.g, CFOUR,*” COLUMBUS,** GAUSSIAN,**' GAMESS,***
MAGIC,***> MOLCAS,*** MOLPRO,**> NWCHEM,>
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Figure 13. Logarithmic electronic contribution to the electrostatic
potential n(U(r) + Q/r) of alkaline cations M* (Q = 1) and M**
(Q=9). The electrostatic potential U(r) was evaluated with the GRASP
code® at the DHF/DC level. The linear part approximated by eq 103
and multiplied by Z can be used as a core-nucleus repulsion correction
for a nucleus with charge Z penetrating the alkaline core, that is, AV, ~
ZU(r).

TURBOMOLE,**” Q-CHEM>%®), program packages designed
for Quantum Monte Carlo calculations (e.g, CASINO,269
CHAMP,””® Quantum MagiC*”"), as well as polymer or solid
state codes using Gaussian basis sets (e.g, CRYSTAL”"?),

Although the valence basis sets are tightly connected to the
specific PPs and are therefore mentioned in the corresponding
sections, a separate section on valence basis sets tries to
summarize some aspects common to all PP approaches, see
section 8.1.

6.1. Energy-Consistent Pseudopotentials

The energy-consistent ab initio PPs in use today developed
during the last three decades from the semiempirical PP
approach. In the latter, the free PP parameters were adjusted
to reproduce (the relevant parts of) the experimental atomic
spectrum, similar to the classic work of Hellmann in 1935.”2
Various difficulties where encountered when trying to extend the
semiempirical approach to all elements of the periodic table and
led to a switch to ab initio PPs, but still keeping the energy-
adjustment. A justification for the energy-adjustment scheme is
provided by the finding of Topp and Hopfield in 1973, that if the
eigenvalues for the ground state and excited states for any given
angular momentum agree, the logarithmic derivatives of the wave
functions at any point on or outside a core radius will also be
correct”” (see also eqs 138 and 139 in section 6.5.5). This
finding is related to a theorem probably going back to Kramers in
1938 which even states that if a potential gives the ground- and
excited-state energies of a given symmetry in agreement with
experiment, it will give the correct wave function in the tail region
as well (see ref 16 in the article of Topp and Hopfield*”*). Thus
the shape-consistency of energy-consistent PPs is guaranteed.

6.1.1. Semiempirical Pseudopotentials. In principle ex-
perimental atomic spectra would indeed be the best reference
data for an energy-adjustment of PPs. However, such an adjust-
ment to experimental reference energies in practice has some
severe limitations. For atoms/ions with more than one valence
electron the valence correlation effects usually cannot be taken
into account with sufficiently high accuracy in ab initio calcula-
tions to guarantee a systematic derivation of the PPs. The

generated PPs would implicitly correct for errors in the treatment
of the valence electron system in the atomic reference states.
These atomic corrections are usually not transferable, for exam-
ple, from atoms to molecules, and thus relatively large errors
might result. Therefore the semiempirical PP energy-adjustment
is restricted essentially to one-valence electron systems, where
valence correlation is absent and the Schrodinger equation for
the valence-only model Hamiltonian can be solved exactly using
either finite difference methods or very large basis sets.

Prototype examples for semiempirical PPs are the alkaline
atoms,””**”° but such PPs have also been pro;)osed for, e.g., the
first- and second-row main group elements.>’® Core—core and
core—valence correlation as well as relativistic effects are
present in the experimental reference data and are thus
accounted for implicitly. In case of core—valence correlation
this was found to lead to too short bond lengths in molecules
(e.g, K, calcd 3.85 A, exp 3.93 A), whereas a corresponding
adjustment to uncorrelated ab initio HF data lead to too long
bond distances (K, calcd 4.13 A). The reason is that core—
valence correlation contributions determined for a single
valence electron are simply treated additively in the many-
valence-electron Hamiltonian and thus are overestimated. A
more successful way to account for core—valence correlation,
i.e, dynamic core polarization, together with nonfrozen core
effects, that is, static core polarization, is provided by core-
polarization potentials (CPPs) in operational form as devised
by for AE calculations by Meyer and co-workers'’®'”® and
implemented for PPs by Fuentealba et al."*® Quite good results
have been obtained using this ansatz for alkaline and alkaline-
earth systems,'®>'®* at least for atoms.

Semiempirical PPs and corresponding CPPs were generated
by Igel et al. for most of the main group elements by fitting the
spectra of the one-valence electron ions for PP and CPP, and
requiring the pure PP result for the one-valence electron ion
ground state to agree with, for example, DHF/DC data.>*
These PPs and CPPs were successfully applied to various mole-
cules.”*® Similar PPs and CPPs were developed and applied for
heavy elements such as Br, I, T, and Pb by Schwerdtfeger and
co-workers.””” %7

Even when supplemented by CPPs the semiempirical PP
approach is bound to fail when trying to achieve high accuracy.
Since the many-electron Schrodinger equation cannot be solved
sufficiently accurate for a general atom, one is tied to perform a
one-electron adjustment of the PP and CPP, where a correlated
treatment of the valence shell is avoided. Since especially for d
and f transition metals, but also for post-d main group elements,
the choice of a small core is a prerequisite for accurate, highly
transferable PPs, the necessary one-electron adjustment has to be
performed for highly charged cores. However, because of the
limited validity of the frozen-core approximation when going
from a highly charged one-valence electron ion to a neutral atom
or nearly neutral ion, large errors result. Note that because of the
partial screening of the nuclear charge by the valence shells and
the higher electron—electron repulsion an atomic core in a
neutral atom is more diffuse than in a highly charged ion. An
additional drawback of the semiempirical PP approach is that in
many cases accurate experimental atomic reference data is
missing or incomplete. Finally, recent calibration studies of, for
example, alkaline and alkaline earth as well as post-d elements
exhibited, that also for these cases for accurate molecular
calculations a small-core approach is needed.”**>** Thus, except
for the cases where large-core PPs can safely be applied, for
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Table 6. Energy-Consistent WB-Adjusted Relativistic Effective Core Potentials and Valence Basis Sets”

elements core e ny

SB—°F *He 3-7
10NJe ’He 8
R\ °Ne 10 3-7
YAr °Ne 10 8
YK, 2°Ca °Ne 10 9-10
215c—37n °Ne 10 11—20
3 Ga—**Br ¥Ar 3d"° 28 3-7
36Kl’ ISAI‘ 3d10 28

37Rb, 3sr 8Ar 3d%° 28 9-10
Py_*cd Ar 3d"° 28 11-20
PIn—51 36Ky 44" 46 3-7
S4%e 3Kr 44™° 46

5Cs, *°Ba 3Kr 44"° 46 9-10
La—""Lu BAr 3d'° 28 29—43
7*Hf-%'Hg Kr 4d"04' 60 12-20
81T]—%Rn *Xe 414540 78 3-8
P Ac—1%Lr 30Ky 4410 4£1 60 29-43

basis set ref

(4s4p)/[2s2p], seg, HF 148
(7s7p)/[4s4p], seg., HF; +1d; +3d1f 298
(4s4p)/[2s2p], seg.,, HF 148
(7s7p)/[4s4p], seg, HF; +1d; +3d1f 298
(7s6p)/[Ss4p], (6s6pSd)/[4s4p2d] 299
(8s7p6d)/[6sSp3d], seg., HF; +1f 283
(4s4p)/[2s2p], seg, HF 148
cc-pVXZ (X = T,Q), seg,, ANO 300
(7s7p)/[4s4p], seg, HF; +1d; +3d1f 298
(7s6p)/[Ss4p], (6s6pSd)/[4s4p2d) 281, 299
def-SVP, def-TZVP, seg. 301
(8s7p6d)/[6sSp3d], seg., HF; +1f 147
cc-pVXZ (X = T,Q), seg,, ANO 300
(4s4p)/[2s2p], seg.,, HF 148
cc-pVXZ (X = T,Q), seg,, ANO 300
def-SVP, def-TZVDP, seg. 301
(7s7p)/[4s4p], seg, HF; +1d; +3d1f 298
(7s6p)/[Ss4p], (6s6pSd1f)/[4s4p2d] 281,299
def-SVP, def-TZVP, seg. 301
(14s13p10dsfeg)/[6s6p5d4fag) 145, 302
p-VQZ reducible to p-VIZ, p-VDZ
(14s13p10d8f6g)/[10s8pSd4f3g], seg., ANO 303
(8s7p6d)/[6sSp3d], seg., HF; +1f 147
cc-pVXZ (X = T,Q), seg,, ANO 300
(4s4p), HF; +1d 144
def-SVP, def-TZVP, seg. 301
(12511p10d8f)/[8s7p6d4f], seg., HF 149, 304
(14s13p10d8fég)/[6s6pSd4f3g], gen., ANO 304
p-VQZ reducible to p-VTZ, p-VDZ

(14s13p10d8fég) /[ 10s9pSd4fig] 305

“The PPs for Sc—Zn are HF-adjusted and contain a first-order relativistic correction from DHF/DC.

example, for weakly bounded systems as metal clusters, the
semiempirical adjustment does not lead to an accurate approach.

6.1.2. Wood—Boring- and Dirac—Hartree—Fock-Ad-
justed Ab Initio Pseudopotentials. Despite the problems
associated with semiempirical pseudopotentials the idea to
construct an effective valence-only Hamiltonian by avoiding
reference to quantities which are merely defined in an indepen-
dent-particle approximation, that is, orbitals and orbital energies,
is quite attractive. If instead of experimental total valence
energies corresponding (relativistic) ab initio AE values are used,
it is in principle possible to go beyond the HF approach in the
adjustment. On one hand static correlation effects could be
included at the multiconfiguration HF (MCHF) level, on the
other hand an intermediate coupling scheme instead of pure LS
or jj coupling can be used. Moreover, both AE reference and PP
adjustment calculations can be carried out using a finite differ-
ence approach, thus avoiding that any basis set incompleteness
errors to affect the PP parameters. Finally, relatively small effects
which are typically only handled by quasidegenerate perturbation
theory at the post- MCDHF AE level, for example, the Breit
interaction or quantum electrodynamic contributions, can be
directly adjusted into the PP provided that the same configura-
tion space is used at the AE and PP levels. It is thus not surprising
that the energy-adjustment of PPs regained attention in the ab

- 28 . . N
initio framework.”® To emphasize the difference to semiempi-

rical energy-adjusted PPs the term energy-consistent was coined
for these PPs.

The free parameters of a given valence-only model Hamiltonian
are chosen in such a way that the value of the functional

S = Y wi(E]" —E* + AEgg)” := min (104)
1

becomes a minimum. Here, depending on the Hamiltonian and
the type of PP to adjust, the sum runs over configurations, LS
states or | levels. EXF and EF? denote the total valence energies,
calculated with respect to the total energy of the core systems, for
the Ith reference configuration, LS state or ] level from AE and PP
calculations, respectively. The weight factors wr are usually
chosen to give every nonrelativistic configuration independent
from the number of underlying LS states or ] levels the same
weight, for example, for each of the 3p, 'D, and 'S states arising
from a p2 configuration a weight wy = 1/3 is chosen to fit a scalar-
relativistic PP, whereas for each of the corresponding five J levels
0, 1,2, 2, and 0 a weight wy = 1/5 is used for fitting a relativistic
PP. The global shift AE,s used in recent adjustments typically
amounts to less than 1% of the total ground state valence energy,
but allows a significantly better fit. It relaxes the requirement
that the PP and AE total valence energies EF? and EXE agreeina
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Table 7. Energy-Consistent DHF/DC+B-Adjusted Relativistic Effective Core Potentials and Valence Basis Sets

elements core e ny

YK, 2°Ca °Ne 10 9-10
25— 28N 1°Ne 10 11-18
Cuy, 3°Zn 1°Ne 10 19—-20
M Ga—3Kr 1Ne 10 21-26
STRb—3%sr Bar 3d"° 28 9-10
Fy_*pq 8Ar 3d%° 28 11-18
Yag, **Cd 8Ar 3d%° 28 19—20
“In—"*Xe 8Ar 3d%° 28 21-26
55Cs, *°Ba 36Ky 44 46 9-10
72Hf—"8pt 36Ky 4404 60 12—18
A, *°Hg Kr 4404 60 19-20
81T]—%Rn 36Kr 44044 60 21-26
7Ry, %Ra S*Xe 4*5d"° 78 9-10
" Eka-Au, S*Xe 4f'*5d'05F* 92 19—20
112Eka—Hg

"9Fka-Fr 86Rn 5f146d"° 110

basis set ref
(11s11p5d3f),(12s1p7d) 292, 293
285
(12s12p9d3f2g)/[6s6p4d3f2g] 291
aug-cc-pwCVXZ (X = D, T,Q,$), gen,, ANO 204
(12512p9d3f2g)/[6s6p4d3f2g], gen. 174
(13s10p5d3flg),(14s11psdaflg) 292,293
aug-cc-pVXZ (X = D,T,Q,S), gen.,, ANO 306, 307
dhEXVP(—2¢) X = $,TZ,QZ 308—310
aug-cc-pwCVXZ (X = D, T,Q,$), gen,, ANO 294
dhfXVP(—2¢) X = STZ,QZ 308—310
(12512p9d3f2g) /[ 6s6p4d3fag] 291
aug-cc-pwCVXZ (X = D, T,Q,S), gen,, ANO 204
dhEXVP(—2¢) X = $,TZ,QZ 308—310
(12s12p9d3f2g)/[6s6p4d3f2g], gen. 174, 307
aug-cc-pVXZ (X = D,T,Q,S), gen,, ANO 306, 307
dhfXVP(—2¢) X = STZ,QZ 308—310
(12s11p5d3f2g),(13s12p6daf2g) 292,293
aug-cc-pVXZ (X = D,T,Q,S), gen.,, ANO 306, 307
dhEXVP(—2¢) X = S,TZ,QZ 308-310
aug-cc-pwCVXZ (X = D, T,Q,$), gen,, ANO 295
dhfXVP(—2¢) X=S,TZ,QZ 308—310
(12512p9d3f2g)/[6s6p4d3f2g) 291
aug-cc-pwCVXZ (X = D, T,Q,S), gen,, ANO 204
dhEXVP(—2¢) X=5,TZ,QZ 308—310
(12s12p9d3f2g)/[6s6p4d3f2g], gen. 173, 174
aug-cc-pVXZ (X = D,T,Q,S), gen.,, ANO 306, 307
dhfXVP(—2¢) X = S,TZ,QZ 308—310
(14s13p8dSf3g),(15s14p8ddfig) 292, 293
aug-cc-pVXZ (X = D,T,Q,S), gen.,, ANO 306, 307
[9s7p7d4f], [10s7p7d4f] 290,311
(17s16p13d6fSg) 292

least-squares sense, for example, the sums of all n ionization
potentials from PP and AE calculations may deviate by about AE .
If one assumes that the energy shift equals the difference of the total
valence energies of the highest energy configurations, LS states or
J levels included in eq 104, AEg, = E5" — Eg', one obtains

S = ;WI[(EfP — Eg¥) — (B —E‘(‘)\E)]2 ‘= min (105)

Thus, when including an energy shift only the total valence
energies calculated with respect to the highest energy configura-
tion, LS state or Jlevel included in eq 104 are required to agree in a
least-squares sense. Energy differences such as excitation energies,
ionization potentials, and the electron affinity are still indirectly
required to show good agreement with those of the AE reference
data, however now excluding those involving the core energy.
The formalism described here to derive energy-consistent
pseudopotentials can be used for one-, two-, and four-compo-
nent PPs at any desired level of relativity (nonrelativistic
Schrodinger, or relativistic Wood—Boring, Douglas—Kroll—
Hess, Dirac—Coulomb or Dirac—Coulomb—Breit Hamiltonian;
implicit or explicit treatment of relativity in the valence shell) and
electron correlation (single- or multiconfigurational wave
functions). Mainly two approaches were used in the past three

decades. Scalar-relativistic PPs, frequently supplemented by SO
operators suitable for use in perturbation theory, were adjusted
to WB scalar-relativistic AE HF reference data,'*'*® see Table 6.
More recently, relativistic PPs suitable also for variational
two-component calculations were adjusted to MCDHE/DC+B
reference data,”®* see Table 7.

Figures 14—16 and Figures 17 and 18 show the radial
potentials of a MCDHF/DC+B-adjusted small-core PP for Ti
and the corresponding valence orbitals, respectively. They are
compared to corresponding curves for shape-consistent PPs
(section 6.2) and a QMC-adapted energy-consistent PP
(section 6.4) to be discussed later. It is seen that the shape of
the potentials differs significantly in the core-region, reflecting
the nonuniqueness of the PPs.*"> When comparing the radial
potentials for small r values it has to be noted that the MCDHF/
DC+B-adjusted PP contains only pure Gaussian functions as
radial potentials, whereas the other PPs also have terms with
factors 1/r and/or 1/r* times Gaussian functions. However, the
4d and 3d pseudovalence orbitals of all three standard PPs agree
excellently with the (averaged) large components of an AE
DHE/DC calculation in the valence region and exhibit only
small differences near the core. Similar findings resulted from a
detailed study of various large-core PPs for In.**

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480
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Figure 14. Radial pseudopotentials for I = 0 for various small-core Ti
PPs: relativistic MCDHF /D C+B-adjusted energy-consistent PP (DHE/
DC+B),*®  shape-consistent DHF/DC-adjusted PPs of Stevens
et al. (SBKJC)**® and Christiansen and co-workers (CEP),**” and
WB-adjusted QMC-adapted energy-consistent PP of Burkatzki et al.
(BFD).">*
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Figure 15. Same as Figure 14, but for I = 1.

The freedom to go beyond the independent-electron approx-
imation was thus exploited by the present fitting procedures only
to a small extent, that is, by the use of an intermediate coupling
scheme for the MCDHF/DC+B-adjusted PPs. One may think
about possible extensions such as including states of special
importance at different levels of correlation treatment into the
reference data, or even carrying out the adjustment using highly
correlated wave functions, for example, a (full-)CI or CC. The
difficulty here is of course the choice of the one-particle basis sets,
which have to be exactly of the same quality for the all-electron
and the valence-only calculation. Because of the pseudovalence
orbital transformation this might not be achievable, except
maybe when the basis sets are saturated up to a maximum
angular quantum number. Clearly, the computational effort of
such a procedure will be much larger than of the present one.
Another interesting aspect arises from pseudopotentials which
incorporate corrections for basis set incompleteness and defi-
ciencies in the correlation treatment, cf. also section 6.3.

Parameters of energy-consistent ab initio pseudopotentials
and corresponding valence basis sets are available for almost all
elements of the periodic table, "~ 149/162175174283,284288-295
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Figure 16. Same as Figure 14, but for I = 2.
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Figure 17. Radial 4s functions for various small-core Ti PPs in
comparison to the large component from AE DHF/DC calculations:
relativistic MCDHF/DC+B-adjusted energy-consistent PP (DHF/DC
+B),285 and shape-consistent DHF/DC-adjusted PPs of Stevens et al.
(SBKJC)** and Christiansen and co-workers (CEP).2*’
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Figure 18. Same as Figure 17, but for 3d.

A compilation of PP parameters together with corresponding
optimized valence basis sets is available from the EMSL
database®®® (acronyms SDD for Stuttgart—Dresden, SBK for
Stuttgart—Bonn—Koln) and the Cologne PP webpages.””’
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Special care has to be taken when spin—orbit coupling is planned
to be included in calculations with small-core PPs: some SO
operators are constructed (similar to the large-core case) for a
fully variational two-component treatment, whereas in some
cases effective valence SO operators are defined. The latter have
to be applied in SO—CI calculations for the valence electrons, in
which the semicore shells (outside the PP core) are frozen in
their scalar-relativistic form.

The Stuttgart—Cologne PPs have been supplemented by
various high quality valence basis sets, in addition to the basis
sets published together with the PPs. For the WB-adjusted
energy-consistent large-core PPs Sundermann and Martin
published segmented contracted cc-pVTZ and cc-pVQZ basis
sets for the heavy p-block elements Ga— Kr and In— Xe and
performed extensive molecular tests.”**>°”% Ahlrichs and
co-workers developed basis sets of split-valence/valence
double-¢ (def-SVP) and valence triple- quality (def-TZVP)
for the elements Rb— At, except the lanthanides.>*"'? In the
same publication auxiliary basis sets for applying the resolu-
tion of the identity approach to the Coulomb interaction
(RI-J) within DFT were presented and applied in geometry
optimizations of systems with up to 300 atoms and/or 2500
basis functions.

For the newer MCDHF/DC+B-adjusted energy-consistent
small-core PPs Peterson and collaborators constructed general
contracted cc-pVXZ-PP (X = D,T,Q,S) basis sets for all p- and
d-elements beyond Kr,20%29+7297:30630731331% Thece basis sets
allow a systematic extrapolation of correlation energies to the
basis set limit. For the inclusion of core—valence correlation cc-
pwCVXZ-PP (X =D,T,Q,5) basis sets were developed for 4d and
5d transition elements as well as the post-d main group elements
Ga—Rn.**7 7731331 Extensive tests for atoms and molecules
were reported. Results of explicitly correlated CCSD(T)-F12
calculations using orbital—;)air specific Slater-type geminals
were recently reported;>'® however, the applied cc-pVXZ-
F12-PP basis sets of Peterson and Hill have not been pub-
lished yet. Weigend and collaborators optimized segmented-
contracted error-balanced basis sets of split-valence/valence
double-{ to valence quadruple-§ quality (def2-SV(P), def2-
TZP, def2-QZP and def2-SVP, def2-TZPP, def2-QZPP for a
smaller and larger set of polarization functions, respectively)
for Sp and 6p elements,?*%31 as well as for 4d, 5d, Ss, and 6s
elements.”***'%*'2 The basis sets were systematically tested for
80 5s-5d and 40 Sp-6p compounds. At the DFT/BP86 level it was
found that the differences between WB- and MCDHF/DC+B-
adjusted are usually small for atomization energies, bond lengths
and HOMO—LUMO-gaps.*"°

When using these basis sets in two-component calculations
including SO terms it was found that the expansions for the
semicore orbitals were not flexible enough to account for the
radial differences of the spinors with j = [ & 1/2. To solve the
problem Armbruster et al. added sets with steep functions, that
is, (2s1d)/[1pld] for In—I, (2p)/[lp] for Au and Hg,
(5p1d)/[3p1d] for TI—At, to the def2-XVP (X = S, TZ, QZ)
basis sets, yielding def2-XVP-2c¢ basis sets.>12316 Weigend and
Baldes optimized def2-XVP and def2-XVP-2c basis sets for the
Ss—6s and 4d—5d elements and relabeled them as dhf-XVP and
dhf-XVP-2c, respectively.®'®*'> When comparing results of
one- and two-component DFT/BP86 calculations it was found
that SO effects are mainly relevant for the 6p elements,
concerning the HOMO—LUMO-gaps also for the Sp and 5d
elements. The basis sets were found to keep a good balance of

errors between s, p, and d elements. Typical errors in binding
energies are 1, 5, and 20 kJ/mol for dhf-QZVP, dhf-TZVP, and
dhf-SVP, respectively.

6.1.3. Lanthanide and Actinide f-in-Core Pseudopo-
tentials. Energy-consistent WB-adjusted PPs for lanthanides
and actinides attributing the open f shell to the PP core have
been published and were quite successfully agoplied during the
last two decades in quantum chemical studies.****?%*'” Guided
by AE FC results as discussed in section 5.2 for Ce, compare
Table S, the Ss, Sp, 5d, and 6s orbitals of the lanthanides, as well
as the 6s, 6p, 6d, and 7s orbitals of the actinides were included in
the valence space. The PPs describe lanthanide or actinide
atoms with a fixed valency, corresponding to a fixed f occupa-
tion modeled by the PP core. The PPs are suited to perform
electronic structure calculations for a superconfiguration, that
is, an average over all electronic states with a given f occupation,
a corresponding average over all f substates, and a specific
valence substate coupled to them in all possible ways. The
underlying superconfiguration concept was advocated by Field
to rationalize the extremely complex electronic spectra of
lanthanide diatomics.>'® For example the electronic structure
of CeO can be modeled as arising from an ionic Ce”" 4f'6s'
o> system. In C,, eight electronic states L3S ILA,® belong
to the 4f'c’ superconfiguration. Because of the core-like
character of the Ce 4f shell these eight states have very similar
bond distances and vibrational frequencies, which can on
average be calculated using a 4f-in-core PP for a trivalent Ce
with a 4f' subconfiguration.”*®*' Energy differences between
molecular states arising from different superconfigurations can
be estimated by setting the atomic energy differences at the
dissociation limit to the experimental or a suitable theoretical
value.***** Although this may seem to be a crude procedure,
it has the advantage that the large differential correlation
contributions arising mainly from the change of the f occupa-
tion number do not have to be calculated explicitly, which is
quite difficult.”®*'” The lanthanide and actinide f-in-core PPs
are available for the most common valencies and were supple-
mented with valence basis sets of varying size, mainly pVDZ,
pVTZ, and pVQZ quality. In addition basis sets without diffuse
functions and suitable for solid state calculations are available.
The available PPs and valence basis sets are listed in Table 8.
The parameters for PPs and basis sets are also available from the
Cologne PP webpage.””’

6.2. Shape-Consistent Pseudopotentials

More widely used than energy-consistent PPs are shape-
consistent ones. Historically these were developed starting from
pseudovalence orbitals constructed accordinog to the original
prescription of Phillips and Kleinman eq 63,”° which was later
relaxed and thus improved. Instead of quantum mechanical
observables as in the energy-consistent PP approach the shape-
consistent PPs are extracted from quantities defined within an
effective one-electron picture, that is, AE valence orbitals and
orbital energies from (relativistic) HF or DHF calculations for a
specific electronic reference state, >0 22>240:325,326

6.2.1. Non-Shape-Consistent Prescription of Kahn,
Baybutt, and Truhlar. In 1976, Kahn, Baybutt, and Trahlar'*
proposed a first prescription for obtaining PPs from finite-
difference HF atomic orbitals, which does not lead to shape-
consistent PPs, but paved the way toward an ab initio construc-
tion of PPs, contrasting the various semiempirical approaches
used so far. Taking advantage of the spherical symmetry of an
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Table 8. Energy-Consistent WB-Adjusted f-in-Core Relativistic Effective Core Potentials and Valence Basis Sets”

elements core ne ny
La—""Lu 1s—4f" 46—60 11
La—""Yb 1s—4f™*! 47-60 10
$8Ce—"Nd, Is—4f" ! 45—48, 12
Tb,**Dy 53,54
89— r 1s—5f" 78—92 11
2*Pu—""No 1s—5*! 84—92 10
OTh—8Cf Is—5f" 78—86 12

basis set ref
(7s6p5d)/[5s4p3d]; seg, HE; +1/+2f 146, 288, 323

[
(8s7p6d)/[6s5pSd,Ssdp4d], 324
(7s6p5d)/[6sSp4d,Ss4p4d], seg., HF; sol.

(756psd)/[5s4p3d]; seg., HE; +1£/+2f 146,288,323
(6sSp4d,7s6pSd)/p-VXZ, 155

X =D,T,Q, seg, HF; +2flg; sol.

(6sSp4d,7s6p5d,8s7p6d)/p-VXZ, 150

X =D,T,Q, seg, HF; +2flg; sol.

(6sSp4d,7s6pSd)/p-VXZ, 151

X =D,T,Q, seg, HF; +2flg; sol.

(6sSp4d,7s6pSd) /p-VXZ, 151

X =D,T,Q, seg, HF; +2flg; sol.

“In some cases reduced basis sets for use in solid state calculations are available (sol.).

atom the orbitals appearing in eq 63 can be factorized in a radial
part and an angular part

<7|(/7a> = Rnl(")YIM(QJ ‘P)
_ %P,,l(r)Ylm(G, o) with a € {¢,v,p} (106)

which are treated at the finite difference level and analytically,
respectively. Note that P, is normalized to unity, whereas R, is
not. In the following we will switch between P, and R, for
convenience. The basic idea is to construct according to eq 63 a
pseudovalence orbital |¢,) for each angular symmetry [ as a
linear combination of the AE valence and core orbitals, to plug it
in the radial Fock equation together with the appropriate orbital
energy &,

14 11+ 1)

2 dr2 + 272 + VIPP(") + Wl,p({|§0n’l’,p>}):| Pp,nl(r)
= gv,nIP ,nl(”) (107)

and to solve the resulting expression for the unknown potential
Vi (n

I1T+1
V) = e~ E D
14 .
E@_Wnl(ﬂ(/’pwﬁ}) P, u(r)
+ (108)

Pp, nl(”)

Here T/AV'Z/P denotes the Coulomb and exchange potential
evaluated with the pseudovalence orbitals |¢,). Here and in
the following we keep the main quantum number n of the
original valence orbital also for the pseudovalence orbital,
although it might not have (n — I — 1) radial nodes.

Three conditions were imposed in addition to eq 63 on the
pseudovalence orbital |¢,): (1) The (energetically lowest)
pseudovalence orbital |¢,) (in each angular symmetry) should
have no radial nodes (a node or zero at r = 0 is not considered a
radial node). (2) The pseudovalence orbital |¢,) should be as
close as possible to the original valence orbital |¢,). (3) The
pseudovalence orbital |¢,) should have a minimal number of
spatial undulations.

These conditions mainly arise from the wish that the basis set
used to represent the pseudovalence orbital |¢,,) can be reduced
comparing to the original basis set used to describe the true
valence orbital |¢,). To impose these conditions in practice,
Kahn et al. constructed a functional which had to be minimized
with respect to the core orbital expansion coefficients 4. in eq 63

n—1 o 2 o0 2
oo [ ([Trems) o[ a5 o
m=1 \J0 0 T\ r

(109)

The parameter A allows to weigh the importance of the two
terms, which are designed to favor the fulfillment of the condi-
tions (2) and (1,3), respectively. The minimization is subject to
the constraint

. R,nl
()

The potentials AVi(r) = Vi(r) + Q/rand AV (r) = Vi.(r) + Q/r
were generated on a grid and then fitted according to eq 89 in a
least-squares sense by a linear combination of radial Gaussian
type functions multiplied by powers of the electron—core
distance r.

6.2.2. Shape-Consistent and Norm-Conserving Pre-
scriptions. The development of the shape-consistent PP
approach resulted from the finding that the sole admixture of
core orbitals to valence orbitals according to eq 63 leads to
pseudovalence orbitals which are too compact, for example,
exhibit too low amplitudes in the spatial valence region. This
deficiency leads to unsatisfactory molecular results such as too
short bond lengths and too large bond energies.'****’

The defect was actually already noticed and overcome in 1974
by the work of Durand and Barthelat,”>**' who extended eq 63
by a (formal) admixture of virtual orbitals. However, in practice
these are less readily available from finite difference atomic HF or
DHEF calculations and incomplete for corresponding calculations
using finite basis sets. Thus explicit reference to virtual (and core)
orbitals was avoided. Thereafter, Christiansen, Lee, and Pitzer’>
in quantum chemistry and Hamann et al.>*® in solid state physics
also presented prescriptions to construct improved pseudovalence
orbitals leading to the shape-consistent and norm-conserving PP
approaches, respectively.

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480
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To arrive at a practical approach one abandons the explicit
admixture of core and virtual orbitals to the valence orbitals
and rather requires the pseudovalence orbital |¢,,) to retain
the correct radial distribution of charge given by the AE
valence orbital |@,) in the spatial valence region outside a
critical radius r.. In addition the corresponding PP pseudo-
valence orbital energy &, is set equal to the AE valence orbital
energy &, that is, for a given [ in the nonrelativistic and scalar-
relativistic case or a given Ij in the relativistic case one requires
that

Rv,nlj(r) for r = r.
RP’"Zj(r) o {fl}(r) for r<r. and & = &y

(111)

For one- and two-component AE HF reference calculations
the radial part of | ) can be used directly, whereas in the four-
component case usually the radial part of the (renormalized)
upper (large) components of the DHF spinors are used for
|@). The auxiliary function f;(r) is required to be radially
nodeless and smooth in the core region (r < r..). Except for the
normalization and continuity conditions for |¢,) the choice of
the core radius r, as well as the smoothing function f;;(r) is in
certain limits arbitrary and may differ for the existing
approaches.*>*32632%33% Usually r, is required to be located
somewhere between the outermost radial node and the out-
ermost (density) maximum of |¢,). Especially in solid state
physics, where plane-wave basis sets are used, larger values of
r. leading to smoother PPs are desired, since these exhibit a
rapid convergence of the total energy and other system
properties with respect to an increase of the plane-wave basis
set. However, larger r. values also lead to a decreased
transferability of the PPs. In solid state physics shape-consis-
tent PPs are often referred to as norm-conserving PPs,*®
since the second condition in eq 111 is replaced by the
evaluation of a normalization integral implicitly imposing a
condition on f;;(r), that is,

Ry, uij(r) = Ry uj(r) forr = r. (112)

and

/ |P, ,nl}-(r)\zdr :/ |Pv,,,l,-(r)|zdr forr > r. (113)
0 0

have to be fulfilled.

Once |@,) defined in eq 111 has been obtained a PP AV,
has to be constructed which, when inserted into the valence
Hamiltonian H,, eq 60, should yield |¢,, ;) as HF orbital for the
atomic reference state under consideration. When using semi-
local PPs defined in eq 79, that is, restricting AV, to the form of
a radially multiplicative potential V;;(r) for each lj-set, a radial
Fock equation can be set up

1 1(I+1) -
~S3m T g T+ Wos{ley, )| Pour)
= gv,nljpp,nlj(r) (114)

The first two terms in parentheses are the radial kinetic energy
operator and W, j; stands for an effective valence Coulomb
and exchange potential for |¢,, ;). With a given |@,, ;) and &,

the PP VZP can be determined pointwise by inversion of
eq 114

1+ 1)

PP\
Vi (r) = &uj— 20

14>
iﬁiwpﬂlj({hpp’,n’l’j’)}) Pp,nlj(r)

+
Pp, nlj (7’)

(115)

Clearly, difficulties arise when pseudovalence orbitals with
radial nodes are inserted, since at the nodes VE-P becomes
singular. Therefore, shape-consistent PPs are usually derived
for radially nodeless pseudovalence orbitals. In cases where
small PP cores are needed in order to limit frozen core errors,
positively charged reference states have to be used. A proce-
dure to allow also pseudovalence orbitals with nodes was
developed by Titov and co-workers (see section 6.2.7).%*'

Relativistic effects are implicitly included in VEP since the AE
reference calculation explicitly describes these effects, which thus
enter |, and &,. The resulting potentials AV};" = Vi'" + Q/rand
A L}) = VE}) + Q/r are tabulated on a grid and are then usually
fitted by means of a least-squares criterion to a linear combina-
tion of radial Gaussian functions. Repeating this procedure for
each [j set one arrives at the final semilocal form of the shape-
consistent PP acting on the ith electron

‘L}PP (1) = _% + Z (ZAZj,kl’inh'k - Ze_ou,,kr?)j)li(i) (116)
i TR

The separation of V'" into a scalar-relativistic spin-averaged part
AVCV’HV and a spin—orbit (SO) part AV, , according to eq 84 is
the same as has been discussed in section 5.3.2.

An extension of the shape-consistent approach has been
proposed by Rappé et al,, who generated shape- and Hamiltonian-
consistent PPs by requiring that in addition to shape-consistency
also the average valence—valence interactions for gseudovalence
orbitals are the same as for AE valence orbitals.*®

6.2.3. (Averaged) Relativistic Effective Potentials of
Christiansen, Ermler and Co-workers. Shape-consistent
spin-averaged PPs (averaged relativistic potentials, AREP) and
corresponding SO operators based on single-configuration Dirac—
Hartree—Fock (DHF) AE calculations using the Dirac—Coulomb
(DC) Hamiltonian have been generated for all elements from Li
(Z = 3) to Eka-Rn (Z= 118) by Christiansen, Ermler and co-
workers.”*”?*373*! The PPs are based on the two-component
formalism of Lee, Ermler and Pitzer**® and an improved shape-
consistency requirement according to Christiansen, Lee and
Ermler.*” In eq 111 the function f(r) was chosen as

4
fi(r) = rbgy(r) = 2 Y ay (117)
k=0

The coefficients aj; were determined by matching at r, for Ry,
and f;(r) the function values and the first three derivatives, as well
as by the normalization condition for the resulting |¢,). The
reference orbitals |¢,) were the large components of the DHF/
DC solutions, see Figure 3. In many cases PPs for two alternative
choices of the core were derived. The PPs are accompanied by
(partly) energy-optimized valence basis sets, where the expan-
sion coefficients for all exponents are usually provided for the
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Table 9. Shape-Consistent DHF/DC-Adjusted Relativistic Effective Core Potentials and Valence Basis Sets of Christiansen,

Ermler, and Co-workers

elements core e
SLi—*Be [*He] 2
*B—'Ne [*He] 2
'Na—"> Mg [*He] 2
1BA]_18p, [IONe] 10
YK—°Ca ["°Ne] 10
215c—39Zn [*°Ne] 10
215c—397n [*8Ar] 18
31Ga— 3Ky [ISAr] 18
31Ga736Kr [18 ] 3le 28
37Rb, 38g. [18 Ar] 3d'° 28
39y _48cq [ISAr] 3d'° 28
Py_cq [3°Kr] 36
“In—%Xe [**Kr] 36
491[1754)(5 [36 J 4d10 46
55C5757La [36 J le 46
La [**Xe] S4
$Ce—""Lu [**Xe] 54
7*Hf—%Hg [*°Kr] 4d"4f'* 60
Hf-5Hg [**Xe] 4£** 68
81T1—56Rn [**Xe] 4f** 68
8LT_86py [MXe] 4145410 78
87pr—88Ra [**Xe] 4f*5d"° 78
89Ac—"*Pu [**Xe] 4£*54"° 78
81T1—56Rn [**Xe] 4'* 68
% Am—""*Eka-Rn [**Xe] 4f**5d"° 78
104pe 118E1 Rn [5 e ]4f14 d105¢14 92

n, basis set ref

1-2 (4s4p) 333

(4s4p)/[2s2p] 343

1-8 (4s4p) 333

(4s4p1d)/[2s2pld] 343

(SsSp)/[3s3p] 344

9—-10 (6s4p) 333

(6s6p)/[3s3p] 343

3-8 (4s4p) 333

(4s4p1d)/[2s2pld] 343

(SsSp)/[3s3p] 344

9—-10 (Ss4p) 287

(6s6p4d)/[3s3p2d] 345

11-20 (7s6p5d) 287

3—-12 (455p) 287

13—18 (3s3p4d) 287

(SsSp)/[3s3p] 344

(6sd4plf)/[4sd3plf] 345

3-8 (3s3p) 287

9—10 (SsSp) 334

11-20 (SsSp4d) 334

3—12 (3s3p4d) 334

13—18 (3s3p4d) 334

3-8 (3s3p) 334
9—11 (5sSpsd) 335, 336
3 (3s3p4d) 335,336

4—17 (6s6p6d6f) 337
1220 (SsSp4d) 335,336
4-12 (3s3p4d) 335,336
13—18 (3s3p4d) 335,336
3-8 (3s3p) 335,336

9—10 (SsSp4d) 338

11-16 (5sSp4daf) 338

13—18 (...)/[4s4p4dif] 339
17—40 (6s7p6dsf) 340, 341
12—40 (6s7p6dsf) 340, 341

atomic ground state. In case of the superheavy elements Cartesian
Gaussian basis sets with 3s- and 3d-type, as well as 4p- and 4f-type,
functions sharing the same exponents were published, whereas for
all other elements the usual spherical Gaussian basis sets with 1s-,
2p-, 3d-, and 4f-type functions are provided.

An overview of the available PPs and accompanying basis sets
of these groups is given in Table 9. Orbital (contraction)
coefficients were provided for all original basis set exponents
published together with the PPs. Parameters for PPs and valence
basis sets are available in electronic form from the EMSL
database®”® (acronym CEP for Christansen, Ermler, Pitzer)
and the homepage of the Christiansen group.***

The shape-consistent PPs of Christiansen, Ermler and
collaborators can be used in scalar-relativistic calculations
(AREP), followed by a perturbative (e.g., based on HF or CI
wave functions) or variational (spin—orbit configuration
interaction®*® ) SO treatment, or after converting to the two-
component form (REP) also in quasi-relativistic HF and

subsequent correlation calculations. As judged from the under-
lying reference data they should be more accurate than those of
other groups based on, for example, CG or WB scalar-relati-
vistic HF reference data. However, for heavy and superheavy
elements the neglected contributions of the Breit interaction
might become apparent. A procedure to consider the Breit
interaction after reconstructing the correct nodal structure of
the valence orbitals was discussed in the first paper of the
series,”>> but has never been applied to our knowledge.

Figures 14—16 and Figures 17 and 18 compare the radial
potentials and pseudovalence orbitals of a small-core shape-
consistent AREP for Ti to corresponding curves obtained for
other approaches. The shape-consistency, which was actually
required for the Ti** ion with an empty 4s shell is maintained also
for the neutral atom.

In the original papers, atomic small-core (11—20
valence electrons) AREP s?d" — s'd"*! excitation energies for all
three transition metals rows are compared to scalar-relativistic

287,334—336
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AE GC results of Martin and Hay.">® The deviations usually are
well below 0.1 eV (mean absolute errors 0.04, 0.03, and 0.05 eV
for the 3d, 4d and Sd elements, respectively), except for Tc and
Re where the AREP values are by 0.13 and 0.12 eV larger than the
AE GC values. Of course it has to be noted that the GC HF
scheme is an approximation to spin-free DHEF/DC calculations
and as such is also affected by errors which may amount up to a
few 0.01 eV for elements as heavy as Au.

For the large-core AREPs of the 3d elements the correspond-
ing deviations were reported by Pacios to amount to about 0.15
and 0.5 eV for s°d” —s'd""" and s*d" — d"** excitation energies,
respectively.”*” Walker et al. analyzed the partitioning of the
valence orbitals into the part in the core region, which is
smoothed for the pseudovalence orbitals, and the unchanged
part in the valence region. It was shown that when the matching
point moves closer toward the nucleus, the 4s pseudovalence
orbital still remains nodeless, but exhibits a bump, which is
reminiscent of a corresponding minimum of the original 4s
valence orbital near the outermost maximum of the 3s valence
orbital. The so-called 3s bump results from the normalization
requirement for the 4s pseudovalence orbital. Walker et al.
showed for Sc, Ti, Fe, and Co that the errors in the above energy
differences can be considerably reduced to less than 0.15 eV,
when the 4s pseudovalence orbital is not smooth, but rather has a
3s bump in the core region.**® As mentioned by Walker et al.
such large-core PPs may be useful for studying large transition
metal clusters or for quantum Monte Carlo studies, however
neither the probably enhanced requirements for basis sets able to
describe the bumps nor the effects of the bumps on electron
correlation energies have been studied so far. To our knowledge
the corresponding PP parameters were not made public.

Pacios demonstrated that an averaging of standard AREPs
derived from different configurations can also reduce these
deviations considerably, whereby a weighted average of AREPs
derived for s*d" and d"** for Sc—Ni and for s°d” and s'd'® for Cu
yielded the best overall results with m.a.e. 0of 0.05 and 0.16 eV for
the §?d" — s'd™' and s’d" — d"* excitation energies,
respectively.*”*** These results compare favorably to the corre-
sponding small-core AREP m.a.e. of 0.04 and 0.07 eV.**’

A similar comparison of excitation energies and ionization
potentials was provided for Yb and Lu, however, no results for
cases where the 4f occupation changes were given.>>” In view of
the very large cores used for the lanthanide AREPs, quite large
FC errors are to be expected.”” No corresponding results were
published for the actinides and superheavy elements, for which a
more reliable smaller core was used.*****

Most of the original papers also provide some results for SO
splittings of atoms and their ions obtained with both REPs in
two-component HF calculations and AREPs by first-order
perturbation theory using the SO term derived from the differ-
ence of REPs and AREPs. In comparison to AE DHF/DC
reference data for the lighter elements Li—Mg, which exhibit
small splittings, relatively large errors of up to 33% arise in some
cases, whereas for Al to Ar the errors remain below 10%.>>* REP
and AREP+SO results are quite similar, indicating small orbital
relaxation under the SO term. It was pointed out that the basis
sets need sufficient flexibility in the core region, especially for the
2p shells, where the REP and consequently the SO term was
generated directly from the large components of the AE DHF
solution and thus exhibits a 1/r> behavior.>** For the heavier
main group and transition elements the REP results are usually
more reliable than the AREP+SO ones. For the cases reported

the REP errors are usually clearly below 10%, with some
exceptions in the 3d series (Sc 3d' 4s%17.8%; Cu 3d° 4s%
12.2%; Zn* 3d° 4s% 11.3%).”7%3*733% For many cases the
AREP+SO approach performs quite well with errors of less than
15%, but a few very large deviations are observed (e.g., almost
+40% for Y and La d' s?). For lanthanides®” and actinides®*®
mostly p', d', and f' splittings were reported for up to 5-fold
positive ions. Very large errors of up to 50% arise for the
lanthanide REP d° splittings, whereas those for p1 and f' are
below 7% and 5%, respectively. The AREP+SO errors are usually
larger. For the light actinides the REP d', p', and f* splittings have
errors below 20%, 9%, and 5%, respectively. No corresponding
results are available for the heavier actinides and the superheavy
elements.*** Since the above-mentioned results for excitation
energies, ionization potentials, and SO splittings were obtained
with finite basis sets, it is quite difficult to judge if errors are
mainly because of the PPs or to the finite basis sets.

After the small-core PPs for TI—Rn***?*¢ were found to lead
to too long bond distances in molecular calculations, a revised
set with an improved representation of the 5f pseudovalence
spinors was published and shown to lead to good agreement
with AE results.>* The more favorable results of the corre-
sponding large-core PPs****3® were found to be due to a
fortuitous error cancellation.

In addition to the basis sets originally published with the PPs,
see Table 9, more extended basis sets have been published for
some elements. Wallace et al. presented pVDZ basis sets for Li to
Ar.** Pacios and Gomez optimized split-valence 311G basis sets
for B—Ne, Al—Ar, and Ga—Kr and tested them in correlated
molecular calculations.>** Blaudeau and Curtiss devised correla-
tion-consistent basis sets slightly larger than pVDZ quality for K,
Ca, and Ga—Kr.*** A corresponding pVDZ basis set for O was
derived by Zhang et al.**° Finally, Blaudeau et al. published
correlation-consistent pVDZ and pVTZ basis sets for Cl and a
corresponding pVDZ set for U. To better describe the pseudo-
valence orbitals near the nucleus and to avoid the coalescence of
two exponents with nearly coefficients of nearly equal magnitude,
but opposite sign, Cartesian Gaussian sd sets with 6 primitives
were partly used.

The shape-consistent PPs of Christiansen, Ermler, and
collaborators were extensively used by Balasubramanian to
investigate the electronic structure of diatomic and small
polyatomic molecules.>*"*** A number of review articles focus-
ing on this PP approach and its applications is available in the
literature,'*~'22%3%3

6.2.4. Effective Core Potentials of Hay and Wadt. A very
popular PP set for main group and transition elements pub-
lished by Hay and Wadt**®>*%% is based on scalar-relativistic
Cowan—Griffin (CG) AE calculations.®® These PPs are espe-
cially attractive, since they are supplemented by quite compact
valence basis sets. It should be noted that the large-core PPs for
the 3d transition metals were adjusted to nonrelativistic HF AE
data to be able to make a comparison to corresponding AE
results. Corresponding scalar-relativistic PPs are also available
for U, Np, and Pu.>°®*%7 Table 10 lists the available PPs and
valence basis sets. Orbital (contraction) coefficients are pro-
vided for all original basis set exponents published together
with the PPs. The parameters for PPs and basis sets are also
available in electronic form from the EMSL database®®
(acronym LANL for Los Alamos National Laboratory; LANL1
and LANL2 for large and small-core transition metals PPs,
respectively).
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In the PP derivation of Hay and Wadt r.in eq 111 is chosen to
be near the outermost maximum of the AE valence orbital ¢, .
The smooth radial function {l(r) adopted for r < r. is chosen
similar to Christiansen et al.>** as

filr) = rbgl(r) =/ kz; al,krk (118)

with g being a fourth degree polynomial (n=4) and b =1+ 3 in
the nonrelativistic case. In the scalar-relativistic case b =1 + 2 was
chosen, with

1
A+ 1=-(1-0q) + \/l(l +1) + Z(l + 010)” + (02)?

(119)

| =

Here o denotes the fine structure constant. For relativistic s
orbitals however the choice of b = 4 + 3 and g; being a fifth degree
polynomial (n = S) has been found to lead to smoother
pseudovalence orbitals. The five coefficients a;; occurring for
I>0in eq 118 are determined by requiring that f,(r) and its first 3
derivatives match the AE valence orbital R, and its first 3
derivatives at r., and the pseudovalence orbital |(pp> remains
normalized. For the six coeflicients a¢ in case | = 0 the necessary
additional condition is that fi(r) and R,, also match at a
neighboring point to r.. With an appropriate choice of r, and
the above conditions it can be achieved that RP,l(r) is nodeless,
has only two inflection points (R”,;(r) = 0) and its second
derivative has only three extrema (R"',(r) = 0). Using the
derived shape-consistent pseudovalence orbital the radial Fock
eq 114 can be solved for the radial pseudopotential V" for each I
value separately according to eq 108 in accord with the prescrip-
tion of Kahn, Baybutt, and Truhlar.'”* A linear combination of
radial Gaussian functions times powers of r according to eq 89 is
then fitted with a least-squares procedure to the numerical
potentials AV, = V; + Q/r.

For the large-core transition metal PPs**® Hay and Wadt
compared HF s*d" — s'd"*" and s*d" — d"** excitation energies
calculated with the Gaussian basis sets listed in Table 10 to AE
finite difference HF (3d metals) and CG (4d and 5d metals)
results. The PPs predict the ordering of the states correctly,
however the s°d” — s'd""" excitation energies are by 0.12 to
0.57 eV too low, except for V where a 0.08 eV too high value is
obtained. The errors in the s*d" — d"** excitation energies are
less systematic and range from —0.42 to 0.34 eV. Besides errors
of the PPs, the small basis sets probably also cause the deviations.
Based on results of AE FC calculations, see Table 4 for Ti, one
would expect a better performance for the corresponding small-
core PPs,>** however neither for these nor for the main group
PPs” a corresponding systematic comparison is available. At the
finite difference HF level the small-core PP s*d® — s'd” and s°d®
— d® excitation energies of Ru deviate from WB AE HF reference
data by only —0.06 and —0.13 eV, respectively,'*” however the
corresponding errors for the heavier homologue Os are signifi-
cantly larger. A corresponding comparison of various three-
valence electron PPs for In gave a mean absolute error in
excitation energies and ionization potentials of 0.18 eV for the
Hay—Wadt PP.**

The GC-based PPs of Hay and Wadt are scalar-relativistic.
Cohen et al.**® and Wadt"*” proposed to account for spin—orbit
(SO) effects using perturbation theory and an effective one-
center one-electron operator adapted from AE calculations
according to eq 88. Since the pseudovalence orbitals do not have

Table 10. Shape-Consistent GC-Adjusted Relativistic Effec-
tive Core Potentials of Hay and Wadt*

elements core e n, basis set ref
UNa—"%Ar  ["Ne] 10 1-8  (3s3p) 355
K, 2°Ca [*%Ar] 18 -2 (3s3p) 355
PR—*Ca [*°Ne] 10 9-10  (5s5p) 354
25307 ["Ar] 18 3—12 (3s2psd) 326
25— ["Ne] 10 11-20  (5s5psd) 354
MGa—3Kr  ['Ar] 3d"° 28 3-8  (3s3p) 355
37Rb, 38sr [*%Kr] 36 -2 (3s3p) 355
Rb—¥sr [*Ar] 3d"° 28 9—10  (5s5p) 354
Py_Mcd K] 46 3-12  (3s3p4d) 326
¥y_cd ["®Ar] 3d"° 28 11-20  (5sSp4d) 354
PIn—Xe  [**Kr] 44" 46 3-8  (3s3p) 355
SCs—Ba  [*°Kr] 4d"° 46 9—10  (5s5p) 354
55Cs, *°Ba [**Xe] 54 -2 (3s3p) 355
La [**Xe] 54 3 (3s3p3d) 326
SLa [**Kr] 44 46 11 (5s5p3d) 354
Hf-*Hg  [**Xe] 4f'* 68 4—12  (3s3p3d) 326
PHE-Hg  [P°Ke] 4d%4f'* 60  12-20  (5s5p3d) 354
81T1-53Bj [**Xe] 4f*5d"® 78 3—5  (3s3p) 3585
87 [**Xe] 4f* 68 13 (3s3p3d) 355
2U—*py [**Xe] 4f*5d"® 78  14—16 356, 357

“ A nonrelativistic parametrization was used for the 3d transition metals.

the correct radial dependence in the spatial core region, the
parameter Z°% cannot be interpreted as an effective nuclear
charge seen by an electron in a valence orbital. It rather has to be
adjusted to reproduce atomic SO splittings and can attain very
large values. In cases where the SO interaction does not lead to
too large differences in the radial shapes of the j =1 — 1/2 and
j =1+ 1/2 spinors, the application of this simple operator in
first-order perturbation theory based on a scalar-relativistic PP
calculation leads to reasonable, albeit not highly accurate
multiplet splittings. Similar effective SO operators were pro-
posed and tested for the main group and transition metal PPs of
Stevens, Krauss, and collaborators by Koseki et al.138 7140 and
Heinemann et al.>*’

For subsequent usage in molecular valence-only calculations
compact valence basis sets were generated, see Table 10. In
some cases the pseudovalence orbitals were fitted by using a
nonlinear least-squares procedure, similar to the one for fitting
the potentials, to a linear combination of Gaussian functions. In
other cases an energy-optimization was performed for the
ground state. Orbital expansion coeflicients for the occupied
shells are available for all exponents******3%% and various
contraction patterns can be generated. The basis sets and PPs
are available from many databases with keywords beginning
with LANL (Los Alamos National Laboratory). Mostly used are
the HF contracted basis sets contracted of double-§ quality,
which are labeled LANL2DZ.>*

Many authors supplemented the basis sets of Hay and Wadt
with diffuse or polarization functions. In the present review we
cannot report all work done on individual atoms, but rather
restrict ourselves to sets of functions derived for a larger number
of elements. A set of f polarization/correlation functions was
optimized by Frenking and co-workers®® for the small-core
transition metal PPs*** in CISD calculations for the lowest states
of the d"*'s' configurations. The contraction patterns used for
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the (S5s5pSd), (SsSp4d), and (SsSp3d) primitive sets were (441/
2111/41), (441/2111/31), and (441/2111/21) for the 3d, 44,
and 5d elements, respectively. In a related article Frenking and
co-workers® optimized f polarization/correlation functions for
large-core PPs of Zn, Cd, and Hg.**® For the (3s2p5d), (3s3p4d),
and (3s3p3d) primitive sets, the contraction patterns (21/11/41),
(21/21/31), and (21/21/21) were used for Zn, Cd, and Hg,
respectively. In the same publication, optimized d polarization/
correlation functions for the group 13 to 18 main group elements
PPs of Al to Bi**® were presented. The (3s3p) primitive set was
contracted as (21/21). Finally, for the alkaline and alkaline earth
elements K, Ca, Rb, Sr, Cs and Ba d polarization/correlation
functions were optimized for the (SsSp) primitive sets using a
(441/2111) contraction pattern. It was found that the optimized
exponents are not too different from those of AE basis sets, thus
implying that polarization/correlation functions of AE basis sets
could also be used for ECPs. Sunderlin and co-workers®®
published (d) polarization and (p) diffuse basis functions for
the group 14—17 main group element PPs*>> for DFT/B3LYP,
as well as MP2 calculations. Recommended values for the
exponents were published and found to be similar to values
obtained, for example, by Frenking and co-workers®* for d
polarization functions for the Wadt and Hay PPs or by Martin
and Sundermann®® for energy-consistent PPs. The addition of
polarization and diffuse basis functions to the Hay and Wadt basis
sets was found to lead to substantially improved results for
electron affinities, bond lengths and energies, as well as vibra-
tional frequencies.*® Hu and Huang reported (d) polarization
and (p) diffuse basis functions for rare gas elements.>®’

Recently, Roy, Hay and Martin proposed revised basis sets
for the Hay and Wadt PPs,****% which are especially suited for
density functional calculations.*** For the small-core transition
metal PPs the (SsSpSd), (SsSp4d) and (5sSp3d) primitive basis
sets were contracted to [SsSp3d], [4s4p3d], and [4s4p3d] for
the first, second, and third transition metal series, respectively,
and bear the name LANL2TZ. In case of the second and third
row, one of two nearly linear dependent p exponents had to be
eliminated. Diffuse d functions were proposed for the first
transition metal series leading to the LANL2TZ+ basis sets. For
the main group elements the use of the uncontracted original
primitive sets, labeled as LANLO8, was recommended. The
addition of polarization functions®** > then leads to
LANL2TZ(f) and LANLO8(d) sets for transition metals and
main group elements, respectively. The revised DFT-adapted
basis sets have successfully been tested for some transition
metal carbonyls and organometallic compounds®®* and are
available from the EMSL basis set compilation.>*®

6.2.5. Pseudopotentials of Barthelat, Durand, and
Co-workers. Durand and Barthelat pioneered the shape-
consistent PP approach. In 1974, they required the pseudova-
lence orbitals to coincide at best with the true valence orbitals in
the atomic valence region,220 and in 1975, they formulated
pseudovalence orbitals as a linear combination of the original
valence orbital, core orbitals and, at variance with the PK
prescription eq 63, also virtual orbitals.”*" The pseudovalence
orbitals |¢,,) were determined from the AE valence orbitals |¢,)
by minimizing the functional

S =g, — @0, — @), with{p,|p,) =1 (120)

The subscript r. denotes that the above integral is to be evaluated
for r = r,, where r. is the radius at which the radial parts of the

valence orbital and outermost core orbital of the same symmetry
intersect. Initially, Barthelat and Durand determined their pseu-
dovalence orbitals |¢,) as linear combinations of AE Slater
orbitals |y, that is

o) = 3, Gl (121)

i=1

The constraint minimization of eq 120, taking eq 121 into
account, leads to a system of linear equations

n

X [l = 206lNC = Culophs, (122)

j=1
which is solved iteratively.”*' Here A denotes a Lagrangian
multiplier. From the generated pseudovalence orbitals the radial
PPs can be obtained by inverting the radial Fock equation. The
approach was later extended to account for relativistic effects,
including SO effects.”* The corresponding reference data was
obtained by algebraic calculations using a second-order Dirac
equation.86 ~

To arrive at compact Gaussian expansions for VPPDurand and
Barthelat proposed a quite useful overlap-energy criterion,*"**°
that is, the minimization of the following operator norm

101] = {gpl O*lgy)'"* with

O = &[0, XP,| — elo X, | (123)

The prescription can be applied for the I- as well as for the
li-dependent case. The quantities without tilde are obtained with
the exact Vi or V};—P from a radial Fock equation such as eq 114,
whereas those with tilde are calculated with an analytical
potential V" or f/EP. Nonrelativistic PPs for Li to Ar*>' and
for Li to Kr as well as for I** were generated according to this
scheme. In the more recent work only one or two Gaussian terms
per | value were needed to have an operator norm|| (|| below
7 % 107> for all cases. The PPs were tested for halogen dimers X,
(X=F,Cl,Br,1) ,363 as well as for the transition metal compounds
ScH;, TiH;F, MnO4~, Zn(CHj),, and Pd(CO),.>** The con-
struction of a Cu PP for usage with minimal basis sets was
investigated and tested for Cu, and CuF.>%

Revised PPs as well as 31G>® and 21G>*” double-¢ basis sets
were derived for Li—Ca and Ga—Kr. The PPs and basis sets were
successfully tested for 30 small molecules, where good agreement
of the PP 31G results with AE 6-31G reference data for
geometries, atomization energies, force constants, and dipole
moments was found. The PPs and 21G basis sets were also tested
for periodic Hartree—Fock calculations of various solids. A
relativistic extension of the method was based on a relativistic
analytical SCF procedure for atoms based on the second-order
Dirac equation, which was developed by Barthelat, Pélissier and
Durand.*® Corresponding scalar-relativistic PP calculations for
InH,, TIH, (n = 1,3) and SnH,, Pb,, (n = 2,4) were mentioned
and results for corresponding calculations on Sc, Cr, Cu, and
CrH, CuH were reported.*®® PPs parameters of this type as well
as a valence basis set were published for F.** In case of I both a
scalar-relativistic PP and a corresponding SO operator were
derived®”® and tested in SO CI calculations with the CIPSO
method®”" for ground and excited states of CH,I*”° and 1,*7?
Maron and Teichteil derived PPs for the halogen atoms from
relativistic AE DHF/DC calculations.>”® In this work it was also
attempted to include a part of the core polarization effects into
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the PPs. Unfortunately no larger sets of relativistic PPs and
valence basis sets were generated by the Toulouse group.
However, the overlap-energy criterion eq 123 developed by
Durand and Barthelat’"*** was later very successfully applied
by Stevens and co-workers****"**”> to generate DHF/DC
based scalar-relativistic PPs for the elements Li to Rn, which
are described below in section 6.2.6. The criterion was also used
by Lester and co-workers to derive PPs for QMC
calculations,>”®3”” which are described in section 6.4.

Barthelat, Illas and co-workers generated a Pt one-electron PP
modeling a Pt" core with a fixed d” configuration.””® The PP
was, supplemented by a I-dependent CPP and a core—core/
nucleus repulsion correction, relatively successfully applied in
HEF, MP2 and FCI calculations of PtH, Pt, and PtH,. The results
indicate that it might be a useful tool for modeling Pt surfaces,
e.g, for studies of heterogeneous catalysis. A simple model
consisting of five quadrupoles, one for each d-shell, multiplied
by an occupancy was proposed by Sellers and Ove to account for
the anisotrog}r of such an open d shell core in such PP or MP
calculations.”””

6.2.6. Relativistic Compact Effective Potentials of
Krauss, Stevens, and Co-workers. A relatively complete set
of compact shape-consistent PPs using a prescription analogous
to Christiansen et al.>** for the construction of nodeless pseu-
dovalence spinors from HF or DHF/DC AE reference calcula-
tions and analogous to the one given by Barthelat et al.**’ for the
generation of compact expansions of the PPs as linear combina-
tion of Gaussian functions has been published by Stevens and co-
workers.**%37#375 Whereas the PPs for the first- and second-row
elements were parametrized nonrelativistically,””* those for the
third, fourth, and fifth row elements®*® and the lanthanides®”
were parametrized relativistically. A relativistic PP for U was also
reported and ag)gplied in calculations on diatomics such as UH,
UO or UE.****! Table 11 summarizes the available PPs and
valence basis sets. Orbital (contraction) coefficients are provided
for all original basis set exponents published together with the
PPs. The PP and basis set parameters are also available in
electronic form from the EMSL database®*® (acronym SBKJC
for Stevens, Basch, Krauss, Jasien, Cundari). A review of early
applications of the PPs was published bgr Krauss and Stevens.”

The procedure of Stevens et al.”®* to generate nodeless
pseudovalence spinors from results of DHF/DC AE®*® valence
spinors is similar to the prescription by Christiansen et al.,*** with
a few small modifications. The large components of the valence
j-dependent spinors were used to construct nodeless pseudova-
lence spinors. The r. was chosen as close as possible to the
outermost radial density maximum of the DHF valence spinor,
and the smooth radial function f;(r) had a leading cubic term for
s, p, and d, as well as a leading quartic term for f spinors. The
pseudovalence spinors were generated on the same grid as used
in the AE calculations and expanded in a large even-tempered
basis set. Relativistic PPs were obtained by inverting the radial
Fock equation eq 114 in this basis set and then averaged
according to eq 82. As usual atomic ions had to be used in some
cases in order to avoid nodes in pseudovalence orbitals and
corresponding singularities in the PPs. The resulting averaged
PPs, as well as the averaged pseudovalence spinors and the
corresponding spinor energies were considered to be exact and
used as reference data. The proposal to use an optimization
procedure based on an energy-overlap functional of Durand and
Barthelat™*"**" was followed to generate compact expansions of
the radial PPs in Gaussian functions. Using the same even-

Table 11. Shape-Consistent DHF/DC-Adjusted Relativistic
Effective Core Potentials of Stevens and Co-workers”

elements core e 1y basis set ref
SLi—""Ne  [*He] 2 1-8 (4sp)/[2sp] 374
UNa—"Ar  ["°Ne] 10 1-8 (4sp)/[2sp] 374
PK,2°Ca  ["®Ar] 18 1-2  (4sp)/[2sp] 286
25c—7n  ["Ne] 10 11-20 (8sp6d)/[3sp3d] 286
31Ga ["°Ne] 10 21 (8sp6d)/[4sp3d] 286
MGa—3Kr ["*Ar] 3d"° 28 3-8 (Ssp)/[2sp] 286
S7Rb, 3¥sr  [**Kr] 36 1-2  (4sp)/[2sp] 286
¥y_*cd  [*Ar] 3d"° 28 11-20 (8sp5d)/[3sp3d] 286
“In [*®Ar] 34" 28 21 (8sp5d)/[4sp3d] 286
S0sn—*Xe  [*°Kr] 4d'° 46 4—8 (Ssp)/[2sp] 286
55Cs, *Ba [**Xe] 54 1-2  (4sp)/[2sp] 286
La [*Kr] 44"° 46 11 (9sp5d)/[3sp3d] 286
BCe—""Lu  [**Kr] 4d*° 46 12—25 (6sp3d7f)/[4sp2d2f] 375
PHf-Hg [*Kr] 4d"°4f* 60 12—20 (7sp5d)/[4sp3d] 286
81 [*°Kr] 4d"%4£ 60 21 (8spSd)/[4sp3d] 286

P P

82pp—8Rn  [**Xe] 4£'*5d'° 78 4—8  (Ssp)/[2sp] 286

“ A nonrelativistic HF-adjustment was performed for Li—Ar.

tempered basis set as above the atomic radial HF problem was
solved for an approximate PP in analytical form, whereas the
Coulomb and exchange operators W were constructed from the
exact pseudovalence orbitals. Then eq 123 was minimized with
respect to the parameters in the analytical ansatz for the PP. In
contrast to Christiansen et al. or Hay and Wadt, who used a least-
squares fit of Gaussian functions to the PP tabulated on a grid and
often ended up with six or more Gaussians per /-value, no more
than three Gaussians per l-value were needed for the resulting
relativistic compact effective potentials (RCEPs). The overlap
between exact and approximate pseudovalence orbitals was
larger than 0.99999 and the difference between exact and
approximate eigenvalues was less than 0.001 hartree.

Large cores were used for the alkaline and alkaline earth
elements Li—Cs and Be—Ba, which were treated as one- and
two-valence electron systems, respectively.”***”* Parameters
for an effective CPP eq 97 to 99 of the type proposed by Meyer
and co-workers'”®'7" were adapted to experimental data.”*°
The authors note, however, that these large-core PPs have to be
used with care in cases of strong ionic bonding, since the
exchange repulsion between the metal cation core modeled by
the PP and the ligand electrons is underestimated for small
metal—ligand distances.”*® This finding agrees with results of
other authors.”*"%*

Large cores were also used for the group 13 to 18 main group
elements, except for the group 13 post-d elements, where the
small-core  definition of the transition metals was
recommended.*®® The small-core choice for the group 13
post-d elements is also shared by other researchers.”***** Small
cores were also chosen for the transition metals, in analogy to
the PPs derived by other groups,'*7283287:334733635% 1 ca5e of
the lanthanides Ce—Lu an intermediate core was applied, that
is, the 4f, Ss, Sp, 5d, and 6s shells were assigned to the valence
shell.>”

Figures 14—16 and Figures 17 and 18 compare the radial
potentials and pseudovalence orbitals of a small-core shape-
consistent RECP for Ti to corresponding curves obtained for
other approaches.
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Basis sets of double-C quality with equal exponents for s and p
expansions, and triple- quality for the d expansions were
optimized for the main group and transition metal PPs.”*® For
lanthanides a quadruple-C contraction of the common s and p
exponents, as well as a double-{ contraction of the d and f
exponents was recommended.>” Tt was found that a relatively
large number of six, seven, and eight Gaussians was needed to
describe the 4f shell of the early, middle and late lanthanides. As a
compromise contractions based on seven Gaussians were
generated.

Atomic tests were published for transition metal atoms, that is,
energy differences between the lowest LS states of the neutral
atom d"s>, d"*'s', and cation d"*" configurations (group 3—10),
neutral atom d’s% d'%' and cation d%s', d'° configurations
(group 11), as well as neutral atom d"%” and cation d’s”
configurations (group 12) were evaluated using the PPs and
optimized valence basis sets. The errors compared to the AE CG
data of Martin and Hay"*® are for most cases less than 0.1 eV and
amount to at most 0.17 eV,**® proving the good quality of the
derived compact PPs. For the lanthanides Ln*" 4f'5d" — Ln*"
4f" jonization energies calculated with the PPs and correspond-
ing valence basis sets exhibit errors between 0.04 eV (Ce) and
0.19 eV (Lu) in comparison to finite difference AE DHF/DC
reference data.””® In view of the small FC errors for this process,
see Table 4, one might expect that the errors partly also arise
from the applied valence basis sets.

The PPs of Stevens and co-workers are scalar-relativistic. The
authors recommend to treat SO effects using the effective one-
electron AE SO term eq 88 as proposed by Wadt."*” Parameters
for the effective nuclear charges Z.q were derived by Koseki
etal."*® for main group elements by adapting to experimental fine
structure splittings of IT states of diatomic hydrides. The SO
terms were tested for over 120 diatomics in perturbation theory
using a MCSCF wave function. The comparison to correspond-
ing AE results is quite favorable, whereas with respect to the
available experimental data for 61 cases errors of 10% or less were
observed. For other 25 cases the errors were 30% or less and for
26 cases they amounted to more than 30%. Corresponding
parameter sets were also reported for the 3d, 4d and 5d transition
metal atoms'* and calibrated against results obtained with the
full Breit—Pauli Hamiltonian."*” Work using an effective one-
electron AE SO term was also published by Heinemann et al. for
the Pt atom.>*’

The usage of SO terms as sug%ested, for example, by Lee
et al.>*® or by Hafner and Schwarz,”* was investigated for C and
Si by Stevens and Krauss,>® but obviously not further pursued.
Whereas the p SO term for C represented the usual 1/ radial
behavior moderated by two-electron screening terms, the corre-
sponding p SO term of Si looked very different, depending on
how the pseudovalence orbital was constructed.

6.2.7. Generalized Relativistic Effective Core Potentials
of Titov, Mosyagin, and Co-workers. Small cores have to be
used in case of transition metals, lanthanides and actinides in
order to keep FC errors in PP calculations below a required
threshold. For small cores, however, more than a single occupied
pseudovalence orbital of the same Ij combination may be present
in suitable reference states, that is, states for not too highly
charged ions. Therefore one or more pseudovalence orbitals may
have a radial node, which would lead to singularities in the PP, if it
is determined by inversion of the Fock equation eq 114. Most
shape-consistent PPs are therefore derived for positive ions,
which are chosen in such a way that this problem does not

occur. However, if the ions are highly charged, frozen-core (FC)
errors arise for the derived PP when it is transferred from the ions
to the neutral atoms or molecules. A solution to this problem is
attempted in the so-called generalized relativistic ECP (GRECP)
approach of Titov, Mosyagin, and co-workers,*"***73%5 where
the PP is interpolated in a vicinity of the pseudospinor node.>*" If
more than one pseudospinor per Jj is available, more than one
radial PP for this /j combination can be derived. The GRECP
approach therefore employs the idea of separating the orbital
space of a heavy atom into three regions: inner core, outer core,
and valence, which are treated differently. The idea to partition
into these three regions appeared already in 1985 in work of
Andzelm et al.>*® on MPs of the Huzinaga type; however, the
approach is currently not further pursued.

The GRECP operator to be used in atomic calculations is
written in the form>*'

L 1+1/2 R
AVerecp (i) = Viry(ri) + Y, Y, [Vay(ri) = Vs (r)1Py (i)
1=0j=i= 172
L 1+1/2 .
+ Z Z Z anoc,lj(ri) - Vny,li(ri)} Pnocrli(i)
e 1=0 j=[I— 1/2|
+ B i(8) Vi 5 (r2) = Vi, ()]
Lot o V() 4 Vi ()
S 3 B el Vi
ey Moc 1=0 j=|l—1/2|

- an,u(ff)] P, ii(i) (124)

Here n, and n, are the principal quantum numbers for valence
and outer core orbitals, respectively. The maximum J and L
quantum numbers are related by J = L + 1/2. Plj is the projector
on the spinor spherical harmonics |ljm)

S i (12)

m= —j

Py(i) =

where as P, is the projector on the outer core pseudospinors

m=j

Y [roc ljm)noc, ljm| (126)

m= —j

Puy(i) =

The GRECPs combine the standard semilocal form of the PPs
with additional nonlocal terms to take into account the difference
between the effective potentials acting on the outer core and
valence electrons with the same [ and j quantum numbers.

For application of the GRECP to molecular calculations the
GRECP operator is often rewritten as a sum over spin-free
(averaged) and spin-dependent parts.**' A number of GRECPs
accounting also for contributions of the Breit interaction have
been published recently for U, Pu, and the superheavy elements
112, 113, 114."%'75 An extension of the method is the self-
consistent GRECP approach, which aims to reduce the d- or
f-occupation number dependence of the errors by mixing
GRECPs adjusted for two different configurations depending
on the occupation number of the d or f shell under
consideration.'*>**"*** An occupation number dependence
to reduce errors in large-core transition metal PPs was also
discussed previously in 1974 by Schwarz and co-workers."”"
Another correction to be applied for fine structure splittings,
the term splitting correction, corrects the one- and two-electron
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integrals of a shell between pseudovalence spinors under
consideration b}r using the corresponding integrals evaluated
at the AE level. ®>**" The basic idea to replace integrals over
pseudovalence orbitals by their AE counterparts was also used
earlier by Marian and Wahlgren'* and Schimmelpfennig et al.'**

The parametrized form of the GRECPs contains a relatively
large number of parameters, which easily can exceed 100 for
heavier elements. Parametrizations are available for a few heavy
elements (Ba, Yb, Au—Rn, Th, U, Cn, Eka-TI—Eka-Bi) on the
webpages of the Titov group.*®” If this more complex valence-
only model Hamiltonian also leads to higher accuracy com-
pared to the usual semilocal ansatz has to be carefully investi-
gated. Since the GRECP ansatz is at present not supported by
most of the standard quantum chemistry codes, such tests and
applications of GRECPs are still scarce and were performed
mainly by the authors of the method.'*>** "> Some limited
investigation for U and Pu suggests that the GRECP ansatz is
quite accurate, but still suffers from f occupation number
dependent errors of up to ~0.1 eV in energy differences
(excitation energies, ionization potentials) when the Sf occupa-
tion is changed, 9 which might result from the single reference
state used to extract the GRECP and is not present, for example,
when more reference states are used as in the energy-consistent
PP scheme.’"*”

6.3. Pseudopotentials Including Implicitly Correlation
Contributions

Initially pseudopotentials were adjusted to reproduce ex-
perimental data, see, for example, Hellmann.”® In a 1981
publication of shape- and Hamiltonian-consistent PPs God-
dard and co-workers stated that the usage of PPs is “charmingly
seductive, not unlike the sirens of Greek mythology”.>** From time
to time researchers are actually seduced to include more than
the modeling of a HF core and the implicit inclusion of
relativistic effects into the PP approach. Clearly, all semiem-
pirically adjusted PPs, for example, the one derived by Hell-
mann for K in 1935, contain implicitly core—valence
correlation effects. These are however overestimated, if more
than one valence electron is treated with such an empirical
PP,' and should better be treated with CPPs described in
section 5.5. In the following, we, therefore, focus on the
modification of ab initio PPs to account implicitly also for
(some) correlation contributions.

In the 1970s, Goddard and co-workers, mainly motivated by
the lack of sufficient computer power to evaluate differential
correlation contributions in transition metals systems at the ab
initio level, proposed modified effective (core) potentials
(MEPs) for Ni (and Fe), which are ab initio PPs supplemented
by additional terms accounting for intra-atomic electron correla-
tion effects.*** 3% Although several applications to molecules,
that is, NiO, NiCO, and Ni,, were reported, the details of the
approach were not published. Basch and Osman followed the
ideas of Goddard and co-workers and adjusted an Ar-core MEP
for Cu, by adding semilocal terms adjusted so that the energy
separations between low-lying states of Cu, Cu* and Cu*" with
differing 3d and 4s occupations agree better with experimental
data®” compared to the original compact effective (core)
potential (CEP).*"

The Toulouse group reported also some work, where the
usual PP approach was modified to include additional contribu-
tions. Mahé and Barthelat proposed as hybrid shape-consistent/
energy-consistent PP adjustment procedure, using scalar-

relativistic reference data, and applied it to Cu.**® The pseudo-
valence orbitals were derived for a single reference state similar to
the method described above, and the scalar-relativistic HF energy
differences between the 3d°4s> *D, 3d'%4s" 'S, 3d%4s'4p' *P, and
3d%4s” 3F states were fitted usin§ a modification of the original
scheme of Durand and Barthelat.**! In the same work Cu PPs are
discussed which account for a part of the atomic dynamic
correlation energy, that is, correlation of the 3s and 3p shells,
at the CI or MP2 level. The hybrid PP and the correlation
corrected PPs were successfully applied to Cu excitation and
ionization energies as well as to CuH, Cu,, Cu, ", CuF, and CuCl.
The CuX and Cu,X series (X = O, S, Se, Te, Po) were also
investigalted.399

6.4. Pseudopotentials for Quantum Monte Carlo Calc-
ulations

Quantum Monte Carlo (QMC) methods****" use random
walks to sample the Schrodinger equation. In the fixed-node pure
diffusion QMC approach an approximate solution of the
Schrodinger equation is simulated by constructing a random
walk which generates distributions weighted by a known trial
wave function Wr(R). Here R is a 3n dimensional vector
representing the electronic coordinates in real space. Within
the fixed-node constraint the distribution evolving for very long
imaginary time is exact. The expectation value of the Hamiltonian
H is obtained during the QMC process as a statistical average of the
local energy Ejocq = H¥(R)/Wr(R).

Since about two decades PPs in semilocal form are also
frequently applied in QMC calculations,*** **” mainly since
they reduce the number of electrons to be dealt with, as well as
the fluctuations of the local energy Ej,, in the core region, thus
enhancing the computational efficiency. A scheme to use PPs
with a nonlocal form in variational QMC for solids was
developed by Fahy et al.**® *'° The computational effort of a
QMC calculation for an n-electron system scales approximately
as O(n?). For the additional Z* scaling of the computational
effort with nuclear charge Z the exponent is reduced from x ~
5.5 — 6.5 to x &~ 3.4 when the atomic cores are replaced by
PPs.*** Especially suited are so-called soft PPs which avoid 1/r
and 1/ singularities at the core in the effective one-electron
potential. In view of the evaluation of the energy by sampling
the local energy it is also desired to keep the PPs as local as
possible, that is, to keep L in eq 78 as small as possible and the
corresponding radial potentials eq 89 as compact as possible. In
addition the number of Gaussians in the expansion should be
kept as small as possible. There is also evidence that HF- or
DHF-adjusted PPs give better results in diffusion QMC calcu-
lations than DET/LDA-based PPs.*”¢

6.4.1. Pseudopotentials of Lester and Co-workers.
Nonrelativistic PPs meeting these requirements have been
derived a decade ago using the shape-consistent approach for
Be to Ne and Al to Ar by the group of Lester.>”%*”” The part f,(r)
of the radial part R;,; of the pseudovalence orbital |, ;) in the
core region r < r,in eq 111 is taken as

fitr) =+ 24', ™t (127)
k=0

The five parameters a; are used to satisfy the normalization
constraint and to match the AE valence orbital ¢, ; and its first
three derivatives at r.. Because of the choice of only even powers
in eq 127 and a leading power of 0, there is no singularity of the
kinetic energy at r = 0 and the corresponding PP is finite and
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smooth. In order to compensate the — Q/r Coulomb potential
the analytic PP for L in eq 78

Vi(r) = r 2 Y Ap e (128)
k

has to have parameters Ay ; = Q, ny,1 =1, Ar 5 = Qay 1, npp =3,
and a;, = ay,;. The first term cancels the Coulomb singularity
within some distance from the nucleus controlled by 4, ;, which
remains as a free parameter. The second term is included to
cancel the cusp of — Q/r + Vi(r) at r= 0. Only a semilocal s term
was used, e.g., L = 1 was chosen. Lester and co-workers used, with
a slight modification, the overlap-energy criterion eq 123 pro-
posed by Durand and Barthelat**"*** to determine the remaining
free PP parameters. In atomic test calculations AE HF ionization
potentials and electron affinities were reproduced with mean
absolute errors (m.a.e.) of 0.017 and 0.015 eV, respectively. For
the DHF/DC adjusted shape-consistent PPs of Stevens and co-
workers>®® the m.a.e. were 0.022 and 0.010 eV, whereas for the
energy-consistent WB adjusted PPs of Bergner et al.'** the m.a.e.
amounted to 0.011 and 0.016 eV.>”” A small bias might arise from
the comparison of nonrelativistic and relativistic results.

6.4.2. Pseudopotentials of Trail and Needs. Nondiver-
gent shape-consistent DHF/DC averaged relativistic PPs and
corresponding SO terms, for H to Ba and Lu to Hg were
generated by Trail and Needs.*'"**” The shape-consistent pre-
scription eq 111 was slightly modified, that is,

[Gv,lj(f)2 + Fv,l;(?’)z}l/z for r=>r.
Rp,li(r) = flj(") for r<r, and &l = &y

(129)

where G, and F,; denote the upper and lower radial compo-
nents of the DHF spinor |¢,;). Equation 129 preserves exactly
the valence charge density outside of the core region. Trail and
Needs report that the core radius r. was usually chosen to be r. =
t, + 0.9(r,, — r,), where r, and r,, denote the position of the
outermost node and the outermost maximum (of probably lel}-) E
respectively. The smoothing function f;;(r) was chosen according
to the Troullier—Martins scheme’" as

6
fi(r) = T exp( 2::0 c2mr2m> (130)

The factor 7! ensures that no 1 /r? singularity occurs in the PP,
whereas ¢; = 0 ensures that no 1/r singularity is present. Terms
with 7! in the sum have been excluded to prevent the
appearance of a cusp of any order at the origin. The seven
coefficients were determined by the norm-conservation within r,,
continuity of R, ; and its four derivatives at 7., as well as a zero
curvature of the resulting potential at the origin.

Instead of simply inverting the radial Fock equation, Trail and
Needs applied a more refined procedure,*"" which also eliminates
long-range nonlocal contributions due to the HF or DHF nonlocal
exchange interaction, that is, generates a potential which is nonlocal
only close to the core. The analytical PPs were finally obtained by
applying an extended overlap-energy criterion eq 123, that is,

2 = Y (0, O*|,) with
P

O = &P, X0, | — &lo, Xy (131)
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Figure 19. Radial 4s functions for various small-core Ti PPs in
comparison to the large component from AE DHF/DC calculations:
standard shape-consistent DHF/DC-adjusted PPs of Stevens et al.
(SBKJC),* and Q_MC—adagted shape-consistent DHF/DC-adjusted
PP of Trail and Needs (TN)**” and WB-adjusted energy-consistent PP
of Burkatzki et al. (BFD).'**

In contrast to the original formulation of Durand and Barthelat®*"**

Trail and Needs use a sum over all pseudovalence orbitals in the
minimized functional 2, instead of separate optimizations for
each pseudovalence orbital. Still the expansions are relatively
long and contain 16 terms each for the local PP as well as the
semilocal s and p PPs. The fact that the d-projector was taken to
be local might lead to inaccuracies especially for wave function-
based correlated calculations of the heavier d transition
elements.

The Ti small-core PP of Trail and Needs was not included into
the comparison of the PPs in Figures 14—16, since its core
definition ([Mg]) does not match the one of the other PPs
([Ne]). The 3d and 4s pseudovalence orbitals however can be
compared, see Figures 19 and 20. The nodeless 4s pseudovalence
orbital of the Trail and Needs PP deviates inside r & 2 Bohr from
the AE DHF large component, whereas this is the case only
inside r & 0.7 Bohr for the other PPs using the Ne-core. Both
QMC-adapted PPs deviate for 3d inside r &~ 1.3 Bohr from the
AE reference, whereas the agreement for the standard PP of
Stevens et al. is essentially perfect. The lack of shape-consistency
occurring for shape-consistent QMC-adapted PPs as well as also
for the corresponding energy-consistent PPs described in the
following section can be attributed in this case to the require-
ments imposed to eliminate the Coulomb singularity at the
nucleus. Accuracy is thus sacrificed to computational efficiency.

Valence basis sets for the Trail—Needs PPs were not reported
to our knowledge. The PPs are available from the CASINO
QMC code homepage.*'> On this page also PPs with smaller
cores are provided, for example, for the transition elements, and a
relatively large amount of atomic calibration data is provided for
every PP.

6.4.3. Pseudopotentials of Burkatzki, Filippi, and Dolg.
Finally energy-consistent scalar-relativistic WB adjusted PPs for
main group and 3d transition metals were published by Burkatzki
et al.">*">* The 1/r singularity at the origin was removed and the
local PP was restricted to be finite and behave quadratically for
small r

_ gefamr?

1

VL(fi) + QaL,ll’,'eiaL’ﬂ‘z + AL,3€7aL'3r‘2 (132)
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see also Figures 14—16. Including the semilocal part, the PP is
given by

L—-1
AVpp(l) = VL(T'i) =+ 2 Azeﬂ”" Pl(l)
=0

(133)

where L = 1 and L = 2 was used for first-row and second-row, as
well as 3d transition metals, respectively. The semilocal s and p
potentials were required to have a negative curvature at the origin
by optimizing the parameters according to eq 104 under the
additional nonlinear constraint Ay 3a; 3 + Ag; > Oforeach [ < L — 1.
The large difference of the d potential causes the significant
deviations of the 3d PP orbital from the AE reference, cf. Figure 20.
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Figure 20. Same as Figure 19, but for 3d.

In contrast to the set of Trail and Needs,**” who use a large-core
definition for all of their PPs, a more reliable small-core option was
used for the 3d transition metals and the number of adjustable
parameters is significantly smaller.

The PPs are supplemented with correlation-consistent valence
basis sets of pVDZ to pVSZ quality for the first and second row
main group elements, pVDZ and pVTZ quality for the third to
fifth row main group elements as well as pVTZ and pVQZ quality
for the 3d transition metals. The PPs are also available from the
Internet.*"?

Overview and Atomic Test. An overview of PPs constructed
especially for QMC is provided by Table 12. These PPs might
also be used in standard quantum chemical calculations. How-
ever, due to the additional restrictions for their analytical form
made to suit the needs of the QMC approach, their accuracy is
probably not as good as the one of standard PPs. This is
illustrated in Table 13 for Ti, where atomic energy differences
for configurational averages with respect to the Ti 3d’4s>
ground state configuration are listed for finite difference AE
DHE/DC calculations performed with the program GRASP,®
together with errors for PP of various groups. It is obvious that
the shape-consistent Ar-core PPs of Trail and Needs*®” and
Christiansen and co-workers*®” perform about equally bad,
with mean absolute errors of 0.90 and 0.94 eV, respectively. A
comparison to Table 4 reveals that the errors follow the
behavior of the FC errors at the AE DHFE/DC level for the
Ar-core. The Needs group developed also a 10 valence electron
PP (Mg core),*"* which performs significantly better, but still
exhibits a m.a.e. of 0.15 eV. This m.a.e. corresponds roughly to
the m.a.e. of 0.10 eV observed in corresponding AE DHF/DC
FC calculations. A better performance with a m.a.e. of only 0.039 eV

yields the energy-consistent PP of Burkatzki et al.'>*

Table 12. PPs and Corresponding Valence Basis Sets Constructed for Usage in QMC Calculations”

elements core ne
“Be—'"Ne *He 2
13A1718Ar 10Ne 10
"H—"He 0
3Li—""Ne *He 2
""'Na—"8Ar '""Ne 10
19K7 30Zn lSAl’ 18
31Ga736Kr 18Ar 3d10 28
37Rb_48C d 36K.l‘ 3 6
“In—"Xe 36K 44" 46
55Cs, °Ba 5Xe 54
"'Lu—*"Hg Sxe 4 68
'"H—"He 0
3Li—"Ne *He 2
'Na—"8Ar °Ne 10
YK, *°Ca Ar 18
215307 1°Ne 10
31G3736K1' lSAl’ 3d10 28
37Rb, 38g,. 36 36
“In—*Xe 36Kr 44" 46
55Cs, *°Ba *Xe 54
81T1—86Rn S*Xe 4f'*5d"° 78

n, basis set ref
2—8 377
3-8 377
1-2 207
1-8 207
1-8 207
1-12 207
3-8 207
1-12 207
3-8 207
1-2 207
3—12 207
1-2 cc-pVXZ (X = D,T,Q,S), seg, ANO 152
1-8 cc-pVXZ (X =D, T,Q,5), seg, ANO 152
1-8 cc-pVXZ (X = D,T,Q,S), seg, ANO 152
1-2 cc-pVXZ (X =D,T), seg., ANO 152
11-20 cc-pVXZ (X = T,Q), gen.,, ANO 154
3-8 cc-pVXZ (X = D,T), seg,, ANO 152
1-2 cc-pVXZ (X = D,T), seg,, ANO 152
3-8 cc-pVXZ (X = D,T), seg, ANO 152
1-2 cc-pVXZ (X=D,T), seg., ANO 152
3-8 cc-pVXZ (X = D,T), seg,, ANO 152

“The three groups refer to the shape-consistent nonrelativistic PPs of Lester and co-workers,>”” the shape-consistent relativistic PPs of Trail and
Needs™”” and the energy-consistent PPs of Burkatzki et al.">'>* No basis sets were published for the PPs of the first two groups.
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Table 13. Relative Dirac—Hartree—Fock (DHF) Energies (eV) for the Dirac—Coulomb—Hamiltonian of the 2] + 1-Weighted
Average of All ] Levels Belonging to a Nonrelativistic Configuration'”® with Respect to the Value for the Ti 3d> 4s” Ground State

Configuration”
PPs for QMC standard PPs

AE TN BED CEP SBKJC D

DHE/DC 4ve 10ve 12ve 4ve 12ve 12ve 12ve
core 86.261 2.692 —0.255 0.007 2.580 0.193 0.012 0.027
st 53.741 2488 0.141 0.106 2.731 0.161 0.033 0.023
$ 30.370 2491 0.537 0.164 2.883 0.143 0.052 0.023
d! 44.064 0.413 —0.156 0.009 0.362 0.069 —0.011 0.000
d' s 22.131 0.410 0.035 0.045 0.435 0.060 0.010 0.003
d' $ 8.319 0.454 0.183 0.060 0.503 0.057 —0.007 0.006
a2 18.558 0.031 0.002 —0.010 0.036 —0.006 —0.021 —0.005
a2 st 5.838 0.011 0.002 —0.001 0.009 —0.003 —0.007 —0.002
a2 $ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
& 6.952 0.307 0.144 0.004 0.317 —0.048 —0.036 —0.015
& s' 1.743 0.207 0.049 0.001 0.180 —0.041 —0.022 —0.014
d* 5477 0.351 0.161 0.026 0.319 —0.060 —0.050 —0.031
ma.e. 0.000 0.896 0.151 0.039 0.941 0.077 0.025 0.013

“ Errors of corresponding finite-difference calculations are listed for the scalar-relativistic QMC-adagted nonsingular PPs of Trail and Needs (TN),>”

and Burkatzki et al,,'** as well as for the standard singular PPs of Christiansen and co-workers (CEP),
number of valence electrons (ve) is listed for each PP. The 10ve PP of the Needs group was taken from the CASINO homepage.

errors (m.a.e.) are given in the last line.

87 Stevens et al. (SBK]C),286 and Dolg (D). The
*12 The mean absolute

The small-core shape-consistent PP Christiansen and co-
workers™®’ exhibits a m.a.e. of 0.077 eV. A better accuracy is
obtained with the small-core shape-consistent PP of Stevens
et al,*®® as well as with the energy-consistent PP of Dolg,285
which yield m.a.e. of 0.025 and 0.013 eV, respectively. It should
be noted that the first two PPs were adjusted to DHF/DC
reference data, whereas the latter one used DHF/DC+B refer-
ence data. The Breit interaction leads to a mean absolute
deviation from the DHF/DC data of 0.012 eV and the deviations
roughly parallel the deviations of the energy-consistent PP from
the DHF/DC data."”® The m.a.e. calculated with respect to the
DHE/DC+B reference data is therefore reduced to 0.006 eV.
Although the results presented here for Ti are just a single case,
we think that they are representative for the situation: the large-
core PPs desired for QMC studies exhibit too large FC errors to
be of use for accurate calculations. Moreover, at least for the
energy-consistent case tests suggest that removing the 1/r
singularity in the PP leads to a worse fit and thus less accurate
PPs. Except for this practical finding the statement of Greeff and
Lester is true, that there is no reason in principle why the PP
should be singular at the nucleus.>”®

6.5. Pseudopotentials for Use in Density Functional Theory

6.5.1. Use of Hartree—Fock Pseudopotentials in Den-
sity Functional Theory. The ab initio PPs presented so far are
almost routinely also used by quantum chemists in density
functional theory (DFT)*** calculations applying Gaussian
basis sets. In contrast to the solid state physics community,
where it is quite common to have separate PPs generated for each
density functional and especially adapted to plane-wave basis
sets, quantum chemists almost exclusively use PPs derived at the
ab initio CG HF, WB HF or DHF/DC(+B) level. Some
justification for this approach exists, for example, from a PP
DFT study by Russo et al. on selected 3d transition metal

compounds.*'* PPs derived from atomic HF calculations were
found to be applicable also in DFT calculations with only little
loss of accuracy, provided that not the (small) PP HF basis sets
but the more flexible AE basis sets are also used at the PP
level.*'* For the test molecules ScFs, TiF,, VEs, TiO, CuF, and
Ni(CO), the mean absolute deviation (m.a.d.) between AE and
PP results was 0.001, 0.001, and 0.001 A at the HF, DFT/
S-VWN and DFT/B-LYP level, respectively. The correspond-
ing results for the binding energies were 0.5, 0.4, and 0.6 kcal/
mol. The transferability of the PPs from HF to DFT seems to be
especially good for small-core PPs, whereas for large cores it
may be an issue. An example was given by de Jong et al., who
investigated the performance of various large- and small-core U
PPs for uranyl UO,**.*'> A HF/CG-adjusted large-core PP of
Hay and Martin®” falsely yielded a bent equilibrium structure,
whereas a corresponding PP adjusted in the framework of
DFT/LDA yielded more reasonable results, although as the
other investigated large-core PPs it was found not to perform as
well as the small-core PP.

The use of small-core transition metal PPs was also investi-
gated for various first- and second-row transition metal
carbonyls.*'® The PP calculations were found to be able to
reproduce well structures and binding energies obtained in AE
DFT calculations. A more recent study compared results for the
halogen atoms Br, I and At as well as for their homonuclear
dimers at the DFT/BP86 and B3LYP level for energy-consistent
small-core PPs**” and the DKH6 approach in one- and two-
component calculations.*"” For the best basis sets the m.a.d. in
the atomic ionization potentials and electron affinities were <0.02
and <0.03 eV for the one- and two-component results, respec-
tively. For the bond lengths, vibrational constants and binding
energies the m.a.d. were at most 0.003 A, 1 cm ' and 0.03 eV at
the scalar-relativistic level and 0.011 A, 2 cm ™' and 0.05 eV when
including SO coupling. Several examples were also provided for
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the actinide series.*'>*'®*? Russo et al. pointed out, however,
that highly erratic results were obtained when the HF optimized
PP basis sets were used in DFT studies.*'* Roy et al. therefore
suggested to recontract the LANL PP basis sets for use in DFT
calculations and obtained for the Hay—Wadt small-core PPs>**
quite good results for test sgrsterns containing first- to third-row
transition metal elements.>*>

6.5.2. Pseudopotentials in Solid-State Physics. DFT was
already quite popular in solid-state physics before quantum
chemists discovered it as a very useful tool. The same is true for
PPs,”® despite the ear%zf applications to molecules by Hellmann”?
and later by Preuss.””* For crystalline solids a plane-wave basis
approach in connection with a DFT scheme is mathematically and
numerically among the simplest and most natural formalisms for a
quantum mechanical description. However, it turns out to be
extremely inefficient to expand quite compact core orbitals or the
oscillatory core part of valence orbitals into plane-waves. There-
fore, especially in combination with PPs the plane-wave basis
DFT approach became one of the most popular methods for
ﬁrst—princiPles electronic structure calculations in solid state
physics.">'” Since the current review is focused on molecular
quantum chemistry rather than on theoretical solid state physics,
we will not review all developments in the latter field, but rather
focus on a few very popular PP approaches in current use.

6.5.3. Nonlinear Core Correction. In solid state physics,
where the use of DFT in connection with DFT-adjusted large-
core PPs is a standard approach (vide infra), the lack of
transferability of the PPs was traced to the linearization of the
energy expression when separating the core from the
(pseudo)valence density, which is a critical approximation espe-
cially for the exchange and correlation contributions in cases of a
significant mutual penetration of the two densities. Louie et al.
therefore proposed to add the core density, or at least a model
(partial) core density

partial __ A sin(Br)/r for r< rq (134)
Pe pr for r=rq

to the (pseudo)valence density for the evaluation of the exchange-
correlation potential.420 Here r, is an adjustable parameter, which
is usually chosen to be the radius at which the core density is 1 to 2
times larger than the valence density. The spherical Bessel function
used for the inner part was chosen for numerical convenience,
especially in view of plane-wave basis sets. The nonlinear core
correction was proven to lead to a significantly improved PP
transferability and also to a better description of magnetic systems
in solid state physics, but except for the work of Delley**" is not
used in molecular quantum chemistry.

6.5.4. Density Functional Semicore Pseudopotentials
of Delley. Despite these encouraging findings, PPs of course
were also derived from DFT reference data. Delley presented so-
called density functional semicore PPs (DSPP) for all elements
from H to Am for use with local orbital methods.**' The DSPPs
are based on a minimization of errors with respect to the norm
conservation conditions for two to three relevant bound atomic
configurations of the atom. The target function D to be mini-
mized consists mainly of

1

Dy = Yllepi— &)

2n—1%5

+ (@pi(r) = @44(r))’] (133)

which makes the pseudovalence and valence orbital eigenvalues
agree at best and relates to the charge conservation. n denotes the
number of orbital-eigenvalue pairs considered. r, denotes a
sufficiently large radius chosen at or larger than the radius of
the outermost turning point of the orbital of interest. Dy is
supplemented by three penalty functions

3
D =Dy + Y YDy (136)

i=11

which for each [-dependent radial PP control the core radius r,,
keep the PPs within certain limits, and limit the number of
turning points in these to at most two, thus avoiding wiggles. For
a completed optimization of D the contribution of the penalty
functions usually vanishes and D & Dy,. The requirement to fulfill
the norm-conservation conditions for different (ionic) config-
urations of an atom amounts to seeking hardness-conserving
PPs.*** Hardness is defined to be one-half the second derivative
of the total energy of a chemical system with respect to the
number of electrons, and thus is an important property for the
correct prediction of electron transfer. The I-dependent radial
potentials were expanded in four even Legendre polynomials for
r < r. and were required to match the bare potential —Q/r up to
the third derivative for r > r..

The primary density functional used to define the AE reference
data was the Perdew—Burke—Ernzerhof (PBE) gradient-corrected
functional, but DSPPs were also optimized for both the PBE
functional as well as the local density approximation (LDA) using
the Perdew—Wang local correlation functional and local exchange.
Since the DSPPs are intended to be used in local orbital methods
the semicore orbitals were usually kept in the valence space. In
addition, following the work of Louie et al,” to improve the
numerical stability and transferability a model core density is
added to the valence density whenever the exchange and
correlation energy or potential is computed. Outside the core
density matching radius r,; the core model density is defined as

loglo. ()] = 3, (—)fd (137)

i=1 \'d

whereas for r < r; an even polynomial determined from the
matching conditions up to the third derivative was used. The
coefficients ¢; are determined by a least-squares fit to the core
density of an AE calculation.

Delley performed test calculations on the 148 molecules of the
so-called G2 set and obtained similar errors as in AE calculations.
The performance of the DSPPs was hereby better than the one of
the PPs of Troullier and Martins,*** probably due to the larger r.
values used for the latter, which limit their transferability in cases
of short molecular bonds. Additional tests were performed for
simple monoelemental solids, zinc blende type semiconductors
and rock salt type ionic crystals. Delley finally concluded that the
PP approximation is clearly less severe than the DFT approxima-
tion, however, he also points out that the PP approximation is
significantly more severe than numerical approximations and
truncations inherent in his local orbital AE method.

6.5.5. Norm-Conserving Pseudopotentials of Bachelet,
Hamann, Schliiter, and Chiang. The development of first-
principles norm-conserving PPs by Hamann, Schluter, and
Chiang™® in 1979 devised a way to accurate calculations of solid
state properties within a PP DFT approach. Based on this work
Bachelet, Hamann and Schliter published in 1982 a set of
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relativistic PPs for H to Pu*>*** for use in local density
approximation (LDA) DFT studies, which found widespread
use in the physics community. The formal nonrelativistic
treatment of relativistic effects within PP a;pgroaches in solid-
state physics is based on work of Kleinman.” On the basis of a
relativistic LDA calculation for an atom in a suitable reference
state, for example, the ground state, the following requirements
are made for the PP calculation:**® (1) The valence and
pseudovalence orbital eigenvalues agree. (2) The valence and
pseudovalence orbitals agree outside a chosen core radius, that
is, for r > r.. (3) The integrals of the valence and pseudovalence
charge densities from O to r agree for r > r... (4) The logarithmic
derivatives of the valence and pseudovalence functions and
their first energy derivatives agree for r > r.. The second
requirement is known as the shape-consistency condition in
quantum chemistry,**> whereas the third one is known as the
norm-conservation condition®*® in solid state physics. From the
third condition in the framework of LDA it is clear that the PP
and the full AE potential are identical for r > r.. The fourth
requirement guarantees that the error for the scattering prop-
erty of the full AE potential inside r. at the eigenvalue energy
and for the particular angular momentum is minimized by the
PP. Provided the first two conditions are fulfilled, it is sufficient
to require the last two conditions to be fulfilled at r = r..
Hamann et al.**® noted that these two requirements can be
related by an identity derived by Topp and Hopfield*”?

= 47 / Ry*r*dr  (138)
e 0

T €

,d d
— 27T (VRblj) de d (R&-[j>:|

where the radial logarithmic derivative of Ry is related to the
scattering phase shift. The identity of R,;; and its first derivative
implies the identity of the logarithmic derivative

1 dRal;|
le dr '

d
— In(Rey)|,,

% (139)

The requirements guarantee the transferability of the PPs from
the atom to other situations where the external potential has
changed, that is, other atomic states, molecules, and solids.

The PPs of Bachelet et al.*** were constructed as follows. The
initial Dirac—Kohn—Sham (DKS) calculation within the frame-
work of LDA, using an exchange and correlation functional based
on the Perdew—Zunger parametrization of the Ceperly and
Alder*®® QMC free electron gas results and relativistic correc-
tions to it according to MacDonald and Vosko, yields the
necessary reference data. The PP generation can be performed
for each lj quantum number separately. A first intermediate
pseudopotential PP Vl(jl) was constructed from the full AE
potential Vj, that is, the nucleus-electron Coulomb potential
and the LDA potential, by cutting off the singularity at the
nucleus with a suitable smooth cutoff function f(r/r. )

;
1—f| — + ¢ with
f(fw) hf(falz)

f() = expl=(r/rey)'] (140)

1 _
Vlj =V

An optimum value A = 3.5 was used, whereas the parameter r_;
decides the range over which the AE and intermediate PP are
allowed to deviate from each other Finally, c;; is adjusted so that
the lowest nodeless solution |(pp l]> of the Schrodinger equation

containing V( ) yields the correct valence eigenvalue 81(,,111)- = &y
Note that here and in the following paragraphs the superscripts
(1) and (2) are used to denote the various potentials, orbitals,
and orbital energies occurring in the derivation.

In a next step the initial pseudovalence orbital |(,0p )Y s
modified at short-range to yield a normalized pseudovalence

orbital |g0P ), which agrees with the full core AE valence orbital

forr > r.
! r
Rp,]+67+1f<rd]>] (141)

51] is obtained as the smallest solution from the normahzatlon
condition for R l]) , where typlcally the norm correction y l] —1lis
found to be small (~107*=1073). Although the existence of a
solution dy; is guaranteed, unphysical results can occur for weakly
bound and extended excited states. These can be avoided by
basing the derivation on appropriately ionized configuration. The
ﬁnal screened PP V( ) producm% the nodeless eigenfunction
|(pP 1]> at the correct elgenvalue e b = Ev,lj is obtained by inverting
the radial Schrodlnger equatlon, Wthh can be done analytically
knowing V( and |(pp11>,

(51]'1’1 + lf
2
o]

with the auxiliary function

2 A
Alr) = 2|22 (’) — QA —A( + 1))( ’)
re,lj Te,lj

Finally, the unscreened PP is obtained using the nodeless
pseudovalence orbital |(pP ) and its radial density p, as

OE.[p,]
dp,(r)

The radial PPs can then be averaged and differenced as shown in
eq 79 to 8S to yield a scalar-relativistic PP and a SO term.

To facilitate tabulation and use, a fit to a few analytical
functions was performed for the PPs so far tabulated on a grid.
The scalar-relativistic PP was split into a long-range Coulomb-
type part V.. and a short-range I-dependent part AV,

VI (r) = Veare + AV (145)

Ry = 7y

v® = v 4

f () =265 —2v"]  (142)

(143)

ven) = v - [ 20— (144

J ="

with the Coulomb-type part smoothly approaching a finite value
forr—0

Vire = _Q [ic,— erf[(lil/zr]] (146)

rli=1

Here Q denotes the charge of the core, and the restriction ¢; + ¢, =
1 applies. Both the I-dependent part AV}, as well as the difference
potential in the SO term are expanded in Gaussian-type functions
according to eq 89. The choice of the error function and Gaussian-
type functions was made to enable an efficient PP integral
evaluation in plane-wave, Gaussian and mixed plane-wave Gaussian
basis sets. The free parameters in the analytical ansatz were
obtained by least-squares fitting the PP matrix elements.

The PP tabulation of Bachelet et al.*** typically comprises
large core PPs, with the notable exception of the lanthanides,
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that is, main group elements are considered with 1 to 8 valence
electrons (group 1, 2, and 13—18), d-transition metals with
3—12 electrons (group 3—12), and the actinides Ac to Pu with
3—8 electrons. For the lanthanides the Ss and Sp shells were
included in the valence space for the reasons detailed in section
5.2. The authors report that the error in 4f—5d excitations is
hereby decreased from 1.7 to 0.2 eV. For Zn, Cd, and Hg
alternative PPs with a two-valence-electron approximation are
also offered.

6.5.6. Pseudopotentials of Troullier and Martins. About
a decade after the work of Hamann, Schliter, and Chlang,328
Troullier and Martins>*® proposed a more simple procedure
to generate relativistic smooth nonsingular norm-conserving
PPs. Their strategy is closer to the one adapted in quantum
chemistry, that is, as a first step a smooth pseudovalence
orbital is generated from an AE valence orbital, and as a
second step the corresponding KS equation for the pseudo-
valence orbital is solved for the screened effective potential,
from which the Hartree potential, as well as the exchange and
correlation potentials are then subtracted, to get the PP for
the ionic atom core. Following an idea of Kerker,329 Troullier
and Martins modified the shape-consistency prescription
eq 111 to avoid the singularity at the nucleus, that i Is) instead
ofa polynomlal eq 118 as used by Christiansen et al.*** or Hay
and Wadt,** an exponential of a sixth-order polynomial in r*
is used

fir) =+ exp[p(r)] with p(r) Z ot (147)

The seven coefficients c,; are determined by the norm-conserva-
tion condition eq 113 for r = r,, the continuity of the pseudova-
lence orbital and its first four derivatives ar r., and the zero
curvature of the screened effective potential at the origin. After
descreening the screened effective potential, smooth PPs were
obtained for all elements up to Hf, as well as for a few heavier ones.
The authors report applications to solids and a detaﬂed compar-
ison to the norm-conserving PPs of Kerker’® and Hamann
etal,**® as well as the non-norm-conserving ones of Vanderbilt. **®
They could convincingly demonstrate that the required energy
cutoft for the plane-wave basis set could be considerably reduced
compared to the PPs of Bachelet at al,, for example, for Zn the
cutoff energy could be reduced from ~900 Ry (Rydberg) to ~70
Ry, reducing the number of plane-waves from ~140 000 to ~3000
for zinc blende.

6.5.7. Separable Form of Pseudopotentials. For compu-
tational efficiency the semilocal part of the PPs derived by
Bachelet et al.** or Troullier and Martins®*° can be converted
to a nonlocal or separable form proposed by Kleinman and
Bylander*” and generalized by Blochl.**® For an energy band
calculation the number of integrals is thus reduced from mn(n +
1)/2 to mn for each |, when  is the number of plane-waves and m
the number of points in the Brioullin zone at which the
calculation is performed. The two contributions to the atomic
PP given in eq 78 are a local part and a semilocal part, which are
abbreviated in the following by V', and anoc, respectively. Given
a complete but otherwise arbitrary set of functions |¢;), for
example, atomic orbitals, the semilocal part can be exactly
transformed to the nonlocal form

nloc - ZZA1]|VHIOC¢ ><anoc¢]| (148)

where the matrix A satisfies the condition

ZAii<(/’j|‘>nloc|(/)k> = Oy (149)
j

The validity of eqs 148 and 149 can be proven by acting with
f/nloc on an arbitrary function, which is expanded into the
functions |@;). A transformation to a new set of functions |q)1),
for which the matrix (¢| V,,Ioc|qo o and hence also the matrix A is
diagonal, leads to the general form of a separable potential

anoc ZA |anoc§0 ><anoc§0 | (150)

Here the A, denote the diagonal elements of the matrix A. Clearly, it
is straightforward to generate the functions |Vn10c(p > when a
semilocal PP has been constructed previously. BlochI**® and
Vanderbilt**® demonstrated that, in the framework of DFT, it is also
possible to avoid the construction of a semilocal PP and generate
the nonlocal PP directly from AE reference data by using

|anoc<0i> = |& — ( __V + Vloc) |(P1> (151)

Here |¢;) belongs to a set of rather arbitrarily chosen pseudova-
lence orbitals which match the AE orbital at a set of energies ¢;
outside some radius. V.. denotes alocal potential which matches
the true atomic potential outside the same radius, but is otherwise
rather arbitrary. In practice the set of the functlons | is not
complete, which might lead to errors. ¥ A corresponding
transformation from semilocal to nonlocal respectively separable
form was proposed by Pélissier et al.**” in quantum chemistry, to
facilitate, for example, the evaluations of energy gradients, see
section 8.2.1.

A computer code able to generate scalar-relativistic PPs of the
type proposed by Hamann et al.**® and Troullier and Martins**°
for a number of popular gradient-corrected density functionals
was published by Fuchs and Scheffler.**°

6.5.8. Separable Dual-Space Pseudopotentials of Hart-
wigsen, Goedecker, and Hutter. Hartwigsen, Goedecker,
and Hutter®' presented relativistic separable dual-space PPs
for H to Rn in the context of LDA, extending earlier correspond-
ing nonrelativistic work for the first two rows of the periodic
table.*> The dual-space PPs have an analytic form involving
Gaussians multiplied by a polynomial in real space and reciprocal
space, thus allowing analytical integration in both cases. The PP
parameters were determined by minimizing the differences
between the eigenvalues and the charges within an atomic sphere
of the AE atom and the PP atom, where the radius of the sphere
was usually taken to be the covalent radius of the atom. In order
to ensure transferability also unoccupied orbitals with the same
angular momentum as occupied in the core, as well as with higher
angular momentum were included in an generalized norm-
conservation condition. The calculations did not exceed [ = 3,
which might become problematic for heavier elements. In order
to include virtual orbitals the atomic calculations were performed
in an external parabolic confining potential. The parameters are
fitted directly to the AE eigenvalues and charges, rather than
fitting analytical or numerical potentials which reproduce for the
correct eigenvalues pseudovalence wave functions, constructed
from the AE solutions. Since in contrast to the method applied by
Bachelet et al.*** or Troullier and Martins>*° the best overall
representation for the eigenvalues and charges of several orbitals
was required, rather than exactly obeying the norm-conservation
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conditions for a single state, a smaller number of adjustable
parameters was found to suffice. Hartwigsen et al.”*" presented
results of plane-wave PP LDA calculations for about 100 small
molecules containing atoms from H to Bi and found a favorable
agreement with corresponding AE results. Corresponding PPs
optimized for several gradient-corrected density functionals were
derived by for H to Kr by Krack.**?

6.5.9. Ultrasoft Self-Consistent Pseudopotentials of
Vanderbilt. In 1990, Vanderbilt**® proposed soft self-consistent
(ultrasoft) PPs, for which the norm-conservation constraint does
not apply and which have to be used in the framework of a
generalized eigenvalue problem

12 N N .
T Vo + Vit ) = edlo) (152)

Here S denotes a nonlocal overlap operator. Vioe stands for the
sum of the core—electron Coulomb potential and the valence
electron—electron Coulomb, exchange and correlation poten-
tials. V,oc has a form similar to eq 148; however, the parameters
Aj now depend on the valence electron density, that is, on the
solutions |@;). Thus V. has to be updated together with V.,
during the SCF iterations.

One advantage of the ultrasoft PPs is, that now for valence
orbitals without radial nodes, that is, 2p, 3d or 4f, smooth
pseudovalence orbitals still can be constructed and difficulties
to describe these compact orbitals by plane-wave basis sets are
thus avoided. The PPs can be constructed directly in nonlocal
form eq 148 and converted to separable form eq 150, avoiding
the (intermediate) construction of semilocal PPs. A tabulation of
ultrasoft PPs for many elements of the periodic table, as well as a
generation code, can be found on the homepage of the Vander-
bilt group.***

6.6. Pseudopotentials with Explicit Relativistic Hamiltonian

Some work considered an explicitly relativistic valence-only
model Hamiltonian. Whereas the concomitant gain of computa-
tional accuracy is not convincing if present at all, the computa-
tional effort turns out to be significantly higher compared for the
commonly used implicit treatment of relativity. Datta et al.**®
used a PK-type PP in a four-component study of PbO. Ishikawa
and Malli'"®" investigated the usage of semilocal PPs in four-
component atomic finite difference DHF calculations. Dolg"**
performed four-component atomic and molecular DHF calcula-
tions and subsequent CI calculations on alkaline atoms and their
monohydrides using four-component energy-adjusted PPs and
CPPs. Pyper**®**” derived quite complicated expressions for V,
by applying the Foldy—Wouthuysen transformation'**"*' to a
four-component PP Hamiltonian and tested the approach in
atomic calculations.”*® The usage of PPs in four-component
calculations might still be of some use, for example, to reduce the
effort for the treatment of heavy atoms in the neighborhood of a
center treated accurately at the AE level. The above work
however indicates that the direct relativistic contributions are
very small for pseudovalence orbitals, and thus, it is probably
sufficiently accurate to apply the parameters of standard PPs with
an implicit treatment of relativity in such calculations, that is, the
adjustment of sets of four-component PPs is probably not
needed. The same may also hold for approximate relativistic
Hamiltonians. This situation is at variance with the MP method,
where because of the correct nodal structure of the valence
orbitals explicitly calculated relativistic contributions are ex-
pected to be larger, see also section 7.4.

7. MODEL POTENTIAL PARAMETRIZATION

There is a considerably smaller variety of MP approaches
than PP approaches. Because of the different choices of the
analytical form of AVyp in eq 91 there are mainly two versions
of the MP approach in current use which differ by the
approximation of the Coulomb and exchange terms, as well
as by the implicit treatment of relativistic effects including SO
coupling.**”** Both versions are ab initio in character and
originate from the pioneering work of Huzinaga.”**

7.1. Ab Initio Model Potentials of Huzinaga, Seijo, Baran-
diaran, and Co-workers

Probably the so far most successful and widely used MP
variant originating from the method developed by Huzinaga®*®
are the ab initio model potentials (AIMP) of Huzinaga, Seijo,
Barandiaran, and co-workers.***** The available relativistic CG-
adjusted AIMPs and corresponding valence basis sets are listed in
Table 14. The AIMP and basis set parameters are also available in
electronic form from the homepage of the Seijo group.**' A
review of the approach, stressing its capability not only to model
atomic cores but also the environment in embedded cluster
calculations, was published by Seijo and Barandiaran.**

In the AIMP approach the core shifting operator 13/5l iskeptas it
stands in eq 94. For practical calculations the core orbitals |(p§>
are represented by sufficiently large (AE) basis sets. The operator
for Coulomb core—valence interaction eq 92 is represented by a
linear combination of radial Gaussians with prefactors 1/, that s,
a local spherically symmetric model potential

A 1
AVL()) = =Y Che 9% (153)
ik

The exponents aﬁ and coefficients Cﬁ are adjusted to the all-
electron (AE) potential in a least—sqluares sense under the
constraint that ZkCﬁ =7, — Q; = —n{ to enforce the correct
asymptotic behavior of the AIMP. Since the evaluation of
integrals over such a local potential is not costly, essentially
any desired accuracy can be easily achieved by using a sufficiently
long expansion.

The nonlocal exchange part AV% eq 93 is finally substituted by
its spectral representation in the space defined by a set of
functions | )é) centered on core 1

AVR() = X 1 ()45, 0] (154)
pa

It should be noted that this AIMP operator yields the same one-
center integrals as the true AE core-exchange operator as long as
the basis functions can be represented by the set of the | Xf;) Two-
and three-center integrals are approximated. Since, in contrast to
the Coulomb part, the exchange part is short-ranged, only a
moderate number of functions |X$> is needed and the applied
one-center approximation is expected to be very good, at least for
not too large cores. In practical applications the basis used in the
spectral representation is chosen to be identical to the primitive
functions of the valence basis set used for the atom under
consideration and the Aéq are calculated during the input
processing of each AIMP calculation.

Following ideas of Katsuki and Huzinaga toward
the development of a variationally stable relativistic AE and also
VO Hamiltonian based on a spectral representation of the CG
Hamiltonian, Seijo, Barandiaran and Huzinaga developed a
corresponding AIMP variant.*** Instead of taking core orbitals

16,120,442,443
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Table 14. Ab Initio Model Potentials for Li to Lr of Seijo, Barandiaran, and Co-workers Derived from Scalar-Relativistic CG AE

Data, as well as Accompanying Valence Basis Sets”

elements core e
3Li, *Be [*He]
*B—'Ne [*He]

'Na—"> Mg [°Ne] 10

[*Be] 4

1351187, [loNe] 10

19 _ 20, [IBAI'J 18

["Mg] 12

215c—39Zn ["Mg] 12

31G, 30Ky [IBAr] 34'° 28

STRb—3sr [**Kr] 36

[*Zn] 30

Py_*cd [*Zn] 36

“In—*Xe [*°Kr] 44" 46

$5Cs—Ba [**Xe] 46

[*cd] 48

*La [**Xe] 54

[*cd] 48

[*cd] 48

$8Ce—""Lu [**Kr] 4d'° 46

7?Hf-*Hg [*cd] 4 62

81T]—%Rp [>*Xe] 4 68

OTh—"CLy [**Xe] 4£* 54" 78

1y basis set ref
1-2 (5s)/[2s] 208
3-8 (5sSp)/[2s1p] 156, 157, 208
1-2 (7s)/[3s] 157,208
7-8 (7sSp)/[3slp] 157,208
3-8 (7s6p)/[3s2p] 156, 157, 208
1-2 (9s)/[4s] 157,208
7—8 (9s6p)/[4s2p] 157, 208
918 (9sSpSd)/[4s2pld] 157, 208, 209
3-8 (9s8p)/[4s3p] 156, 157, 208
1-2 (11s)/[5s] 157,208
78 (11s8p)/[5s3p] 157,208
9—18 (11s7p6d)/[Ss3p2d] 157, 444
3-8 (11s10p)/[Ss4p] 156, 157, 208, 446
1-2 (13s)/[6s] 157,208
7—8 (13s10p)/[6s4p] 157,208
3 (13s7d)/[6s3d] 157, 208
9 (13s10p7d)/[6s4p3d] 157, 208
(13s10p9dsf)[3s3p4daf] 447
11 (13s9p7d)[1s1pld] 447
(13s10p8d1f)[3s3p3d1f] 447
12—25 (14s10p9dsf)/[2s1p1d1f] 448
(14s10p9dsf)/[6sSpSd4f] 448
10—18 (13s9p8d)[1s1pld] 447, 449
(13s10p9dsf)[3s3p4daf] 447
13—18 (13s12p8dsf)/[3s4p4df] 156, 446
12-25 (14s10p11d9f)/[2s1p1dif] 448
(14s10p11d9f)/[6sSpSd4f] 448

“WB-based spin-orbit operators and valence basis sets suitable to evaluate spin-orbit splittings are available for the valence orbitals of B to Lr. The
minimal basis sets published for most elements can be decontracted to add flexibility.

entering eq 94 and eq 153 from nonrelativistic finite difference
HF calculations, they were now determined by corresponding
scalar-relativistic GC calculations.®® For use in eq 94 suitable
linear combinations of Gaussian functions were determined
using a maximum overlap criterion. Once a basis set for an
atomic or molecular calculation is chosen, the mass-velocity and
Darwin terms of the CG Hamiltonian are cast into a spectral
representation eq 154, together with the nonlocal exchange part.
Therefore indirect relativistic effects on the valence orbitals
originating from the core are accounted for by the core orbital
shift operator eq 94, the local approximate Coulomb operator
eq 153 and the spectral representation of the exchange operator
eq 154, whereas the direct effects on the valence orbitals enter
implicitly by a modification of the latter.

Seijo also developed a scheme to account for SO coupling
within the AIMP approach by adding a one-electron SO
operator,**** which has a similar form as the PP SO operator
in eq 86 suggested by Pitzer and Winter,"** but is a representa-
tion of the AE WB SO operator®*

v i o
AVE () = X 52k B, 200G (159)

v, SO
T\ k "

HereT; = al— X ﬁ andg denote the operators of orbital angular
momentum and spin, respectively. P} stands for the projection

operator onto the subspace of angular quantum number [ with
respect to core A. The coeflicients Bf; and exponents ﬁﬁc are
determined by means of a least-squares fit to the radial compo-
nents of the WB SO term. The two-component WB-AIMP
method"® can be viewed as an extension of the scalar-relativistic
CG-AIMP approach,*** which results from the addition of a
representation of the WB one-electron SO operator to the GC-
adjusted AIMP.

The AIMP approach makes use of valence orbitals with the
correct nodal structure. In contrast to, e.g, the shape—consistent
PP approach, the atomic core MPs can be directly constructed
from the AE operators they represent and no reference has to be
made to the valence orbitals during the adjustment. This feature
allows to derive MPs replacing atomic anions, which do not have
bound states for an additional electron, and is especially useful for
modeling crystal lattices in solid state calculations.”**"" Since the
operators appearing in the AIMP are explicit representations of
the core Coulomb and exchange operators as well as of the CG/
WB relativistic operators, it is possible to analyze the physical
effects associated with these terms to a certain extent individually.
Some limitations in doing this exist of course, for example,
relativistic changes of the core also enter the model core
Coulomb and exchange operators. A further advantage is, that
the design and optimization of valence basis sets follows closely
the procedures outlined for AE basis sets.
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Table 15. Model Core Potentials of Klobukowski and Co-workers Derived from Nonrelativistic HF and Scalar-Relativistic CG,

RESC, and DK (DKH3) AE Reference Data

elements fit core
3Li, *Be HF [*He]
SB—'"Ne HF,DKH3 [*He]
"'Na, > Mg HF [“Be]
13A1 DKH3 [*He]
1351187, HF [IONe]
14gi—18Ar DKH3 [*Be]
ng, 20¢, HF [leg]
215c—39Zn HF [*8Ar]

HF ["Ne]
3Ga DKH3 ["Ne]
31Ga736Kr HFE [18Ar] 3d10

CG,RESC [*8Ar]
2Ge—3Kr DKH3 [Mg]
Py_cd CG [**Kr]

CG ["Ar] 3d™
3Rb, 8¢ CcG [*°Ca] 3"

RESC [*°Ca] 3d"°
“In DKH3 [*Ar] 34"
“In—>Xe CG [*°Kr] 4d*°

CG,RESC [**Kr]

506 —>Xe DKH3 ["Ar] 3d'° 45>
55Cs, *°Ba CG [*8cd)

RESC [*cd]
57Laf7ng CcG [36Kr] 44'°
71Lu—80Hg CG [54Kr] 414

CG [*°Kr] 4d"° 4
Au DKH3 [*°Kr] 4d"° 46
i1 DKH3 [*°Kr] 4d'° 4
8lT_86Rp cG [54Kr:| 41+ sdlo

CG,RESC [*Kr] 4£*
82pp_8%Rp DKH3 [3°Kr] 4d"° 4 552

Ne ny ref
2 1-2 210, 457
2 3-8 210, 457, 461
4 7—8 210, 457
2 11 461

10 3-8 210, 457
4 10—14 461

12 7—8 210, 457

18 3—-12 452

10 11-20 454

10 21 461

28 3-8 210

18 13—18 457, 458

12 20—24 461

36 3—-12 452

28 11-20 455

28 78 210

28 78 457

18 21 461

46 3-8 210

36 13—18 457, 458

30 20—24 461

48 7—8 210

48 78 457

46 11-25 460

68 3—12 452

60 11-20 456

60 19 462

60 21 461

78 3-8 210

68 13—18 457,458

62 20—24 463

Nonrelativistic AIMPs and corresponding valence basis sets
were published for the main group and 3d and 4d transition metals
from Li to Xe.**** Relativistic CG-adjusted AIMPs accom-
panied by valence basis sets were published for Li to La, for the
alkaline M* and alkaline M*"* ions, and for the halogen anions
X .29%** Corresponding AIMPs augmented by WB-derived SO
operators as well as suitable valence basis sets are available for the
5d transition metals,**’ as well as for the lanthanides and
actinides.*** WB-adjusted SO operators for B to Ba together with
basis sets modified to properly account for SO effects were also
made available."**"57?%* The modified basis sets essentially
result from the original scalar-relativistically optimized basis sets by
recontracting the most tight primitive with the fixed linear
combination of the rest of the primitives, followed by a normal-
ization, so that finite difference one-electron SO splittings are
reproduced."**">” The core definitions used by Seijo and co-
workers often differ from the ones which are used in the PP
approaches, for example, for the transition metals the (n — 1)s
shell is attributed to the core, whereas the (n — 1)p shell, together
with the (n — 1)d and s shell, is included in the valence. Although
in contrast to the PP approach because of the correct nodal
structure of the radial parts of the MP valence orbitals no
difficulties with respect to the correlation treatment arise from a

modified shape or the orbitals, the frozen-core errors still may be
significantly larger compared to cases where the (n-1)s shell is also
treated as valence shell. Table 4 provides some evidence for the Ti
atom by comparing the treatments as 10 and 12 valence electron
atom. The choice of the core in MP calculations has also been
discussed by Zeng and Klobukowski,**> see sections 7.2 and 9.5.

7.2. Model Core Potentials of Huzinaga, Sakai, Klobukowski,
and Co-workers

Like the AIMP approach of Sejjo, Baradiaran, and co-workers the
model core potential (MCP) approach advocated by Klobukowski
and collaborators** originated from the MP theory proposed by
Huzinaga and co-workers.”* ** The scalar-relativistic MCP ap-
proach was pioneered in 1983 by Klobukowski,**" who based his
derivation of a Ag MCP on the scalar-relativistic CG HF formalism.*
The MCP approach uses a somewhat simpler form of the MP in
eq 91, that is, in the atomic and molecular ECPs eq 57 and eq 58. The
first two terms modeling Coulomb and exchange interaction are
combined in a local term, which has a slightly different form from the
local term used by Sejjo, Barandidran, and co-workers, that is

A 2
AVE(G) + AVE() = —%ZA;}ere*‘*im (156)
T,

Ak
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In newer publications the sum on the right-hand side runs over
three terms for nﬁ =0 and nﬁ =1 each. The shift operator P’s1
corresponds to the one given in eq 94 and the scalar-relativistic
AE HEF core orbitals used to construct it are least-squares fitted
using (a small number of) Gaussian basis functions. Several sets
of nonrelativistic and relativistic MCPs using different core
definitions were developed during the last three decades by
Huzinaga, Sakai, Klobukowski, Miyoshi and collaborators. An
overview is given in Table 15.

Nonrelativistic (Sc—Zn) and relativistic (Y—Cd, Lu—Hg)
MCPs with a large-core approximation treating only the ns and
(n — 1)d shell in the valence were derived for the first, second
and third transition metal series.*** Whereas (n — 1)d"ns” —
(n — 1)d"™'ns' HF excitation energies between the lowest LS
states exhibit errors of up to 0.3 eV when compared to corre-
sponding AE reference data, much larger errors of up to 0.7 eV
are present for (n — 1)d"ns* — (n — 1)d"** excitations between
the lowest LS states. It is unclear to which extent the results were
influenced by the finite basis sets used; however, it is clear that a
significant part of the errors corresponds to FC errors. A
corresponding set of MCPs includes also the (n — 1)p semicore
orbitals, but not the (n — 1)s semicore orbitals, in the valence
space.453 Unfortunately no results for atomic excitations energies
obtained with these pdsMCPs were given in the original
paper;453 however, from more recent work,**~**¢ one can find
errors of up to 0.7 eV in (n — 1)d"ns® — (n — 1)d"'ns’
excitation energies, that is, the performance of the pdsMCPs is
actually worse than the one of the dsMCPs.

For main group elements nonrelativistic and, for elements
heavier than Ar, scalar-relativistic CG-based MCPs were
derived.*'® For the heavier s-block atoms so-called psMCPs
treating besides the ns also the (n — 1)p shell in the valence
were developed, whereas for Li and Be sMCPs treating only the
2s shell in the valence were proposed.*'® For the p-block
elements the ns and np shells were attributed to the valence
shell, ie., the corresponding spMCPs adopt a large-core
definition.*' Instead of numerical radial functions the construc-
tion of well-tempered MCPs (wtMCPs) for the main group
elements Li— Rn by Mane and Klobukowski used well-tempered
AE basis sets for the reference calculations.*” A nonrelativistic
parametrization was provided for all atoms, and a scalar-relati-
vistic one based on the elimination of small components (RESC)
formalism®* for those heavier than Ar. For the 12 post-nd (1 = 3,
4,5) dimers of groups 14— 17, the mean absolute errors for bond
lengths and vibrational frequencies were 0.008 A and 0.4 cm ™,
respectively, when compared to scalar-relativistic RESC AE
calculations.

Scalar-relativistic GC adjusted MCPs for main group elements
including the (n — 1)d shell, besides the ns and np shells in the
valence space, that is, dspMCs, have been derived for the fourth
(Ga—Kr), fifth (In—Xe), and sixth (TI—Rn) main group
elements.*® The MCPs treat these elements with 13—20 valence
electrons. Miyoshi et al. proposed compact basis sets for main
group elements from Li to Rn.** Their MCP-dzp, MCP-tzp and
MCP-qzp sets are designed to have comparable quality to
corresponding Dunning-type AE correlation consistent basis
sets, that is, cc-pVDZ, cc-pVTZ, and cc-pVQZ. For the lantha-
nides La—Lu corresponding MCPs with 11—25 valence elec-
trons were presented.*° GC AE HF energy differences of low-
lying LS states of Pr to Pr’* with 4f° or 4f* occupation are
re]I:)roduced with errors of 0.2 eV or less, whereas the error for a
4f' 5d' *H state of Pr’* amounts to 1.7 eV.

Recently, improved MCPs based on the CG™ scalar-relativistic
HF approach were presented for the three transition metal series
Sc—Zn, Y—Cd, and Lu—Hg.454_456 The MCPs treat these
elements with 11—20 valence electrons, that is, they correspond
to a small core approach including, in addition to the ns, (n — 1)d
shells, also the (n — 1)s and (n — 1)p semicore shells in the valence
space. Atomic (n — 1)d"ns> — (n — 1)d""'ns' HF excitation
energies between the lowest LS states calculated with these so-
called spdsMCPs agree within 0.1 eV with finite difference CG AE
reference data. This accuracy is similar to the one obtained with
PPs, both shape- and energy-consistent, when the same core
definition is adopted.

Quite recently in 2009, Zeng and Klobukowski investigated
various core definitions (pdsMCP, spdsMCP, fpdsMCP,
sfpdsMCP), as well as an adjustment to third-order Douglas—
Kroll—Hess (DKH3) reference data for the Au atom.*** The
small-core approach with 1s—4f in the core (60 core electrons)
and Ss, Sp, 5d, and 6s in the valence (19 valence electrons) turned
out to be most accurate and efficient. The same small-core
approach, which can be motivated by the spatial extension of
the core and valence orbitals, is also successfully used for PPs
since at least two decades,'*733%336354

Klobukowski and co-workers also tested the performance of
the Breit—Pauli (BP) and Douglas—Kroll—Hess (DKH) spin—
orbit (SO) Hamiltonians (see section 3.2) for their MCPs. It
was found that for light elements the BP SO Hamiltonian
including one- and two-electron terms (eqs 36) works quite
well (errors of 3% and less for P, As and Sb atoms, diatomic
hydrides and homonuclear diatomic cations),*** whereas larger
deviations from experimental values arise for heavier elements.**®
When analyzing the one-electron spin—orbit contributions for
DKH3-adjusted MCPs for Pb and Bi it turned out that the DKH
SO Hamiltonian (eq 38) leads to smaller and more accurate
splitting than the BP SO Hamiltonian.**® Both SO Hamiltonians
are closely related as described in section 3.2. The kinematic
factor B eq 37 in the one-electron DKH SO term damps the high
momentum orbital contributions in the underlying BP term and
thus corrects the overestimation.

However, when applying the DKH SO Hamiltonian to the
MCP scheme it was also found that minute errors in the radial
parts of the valence orbitals lead to large errors in the SO
splittings. Thus it became necessary to fit also the MCP Br B
matrix elements to the corresponding AE reference values. For
this purpose Zeng et al.**® proposed to minimize a functional
Aora containing a spin-free (SF) and a SO contribution, that is,

At = Asr + Aso (157)

The SF part consists of an orbital energy deviation A} and an
orbital radial deviation A,r,ad which are associated with weighting
factors w’ and w™9, and summed over all valence orbitals v

Ase = Y (wyA, + widAT) (158)
v
with
A% = [eMP — e8| and
rad 1 g 2
AYS =y = X R (1) — reRMCP ()] (159)
Me=1

Here the sum in the latter expression runs over # grid points,
where more weight was given to small r values. Finally, one

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480



Chemical Reviews

relevant SO integral is fitted with a weight factor wgo as

Aso = wso with X = (Br 3B) (160)

XAE

XMCP _ yAE ’

In case of the tested elements Pb and Bi the SO fit was only
performed for the 6p valence orbital.

Similar DKH3-adjusted MPs were generated for the p-block
elements B—T1**"*® For the first row the valence space
had to be 2s2p (spMCP), whereas for the second row it was
2s2p3s3p for group 13 (spspMCP) and 2p3s3p for groups
14—18 (pspMCP). Starting from the third row the underlying
(n-1)s, (n-1)p and (n-1)d orbitals were included in the valence
space for group 13 (spdspMCP), whereas only (n — 1)p and
(n — 1)d were included for groups 14—18 (pdspMCP). Again,
the smaller cores as compared to previous MCPs resulted in
significantly lower errors when compared to AE results, i.e.,
for excitations in the ground state configuration of X and X"
(X = P, As, Sb) the deviations usually stay below 0.1 eV.
However, since the comparison was performed at the corre-
lated (MBQDPT) level and no configuration changes were
considered, it is quite difficult to judge the MCP errors. The
optimized valence basis sets were (21s14pSd) contracted to
[7p7pSd] for B—Ne, (21s17pSd) contracted to [8s8pSd] for
Al and [7s8pSd] for Si—Ar, (27s21pl6d) contracted to
[8s8p6d] for Ga and [7s8p6d] for Ge— Kr, (29s24p19d)
contracted to [11s12p9d] for In, [10s11p10d] for Sn and
Sb, and [11s11p9d] for Te— Xe, as well as (29s25p20d) con-
tracted to [11s12p8d] for TI and [10s11p9d5f3g] for Pb—
Rn. (4f3g)/[4f3g] and (Ss3g)/[5f3g] correlation/polariza-
tion sets were added to all basis sets for B—TI] and Pb—
Rn, respectively. Despite the large basis sets the computa-
tional savmgs at the CI level range from 52% for O and 87%
for Te.*

The DKH3 MCPs and the corresponding DKH SO formalism
will certainly undergo further development in the near future, for
example, for transition metals, as well as lanthanides and
actinides, it will be necessary to optimize the SO matrix elements
of more than just one shell. In addition, for heavier elements the
Breit interaction has to be included also in the scalar-relativistic
MP formalism.

7.3. Model Potentials for Use in Density Functional Theory
The nonrelativistic MP approach was first used by Katsuki
and co-workers in the framework of Hartree—Fock—Slater
(HFS) X,, calculations.**”**® A DFT-based MP method using
the local-spin density (LSD) approach with the VWN local
correlation functional was developed by Andzelm, Radzio and
Salahub.** Starting from the Kohn—Sham (KS) equation for a
spin-polarized system with n, valence electrons and assuming
orthogonality between the valence |@y) and core orbitals |¢¢)
of spin 0 (0 = +, —) the Huzinaga—Cantu eq 90 can be
rewritten as
HE + Y(—2e)|0Xo?llo)) = €7log) (161)
4
The effective one-electron operator H% and the shift operator
in eq 161 can be split up into a valence part HZ;, and a model
potential AVSp, that is,

HY + Z —2&7)|pIXp?l| = Hgffv + AV (162)

with
. 12, v p(7)d 7’
o _ = _ =~ v
Heff,v - ZV ; 7 + | 7 — 7/|
+ el 0] (163)

Here Q; stands for the charge of core A and v,. represents the
exchange-correlation potential. p, , and p_ denote the spin-up
and spin-down valence densities, respectively, which are defined in
terms of the valence orbitals ¢; and their occupation numbers f;”

Po( Zf o7 (7 (164)

If one assumes that FC approximation is valid, that is, the core
orbitals of the atoms do not overlap with each other and cross
terms in the exchange and correlation potential can, be neglected,
AVMP can be written as a sum over atomic MPs AVMP centered at
cores A

AV, = ZA%I‘I (165)

Similar to eq 91 the MP is split into a Coulomb potential AVE, an
exchange and correlation potential AVXC and the core shift
operator PS’l

AVES = AVE? + AVES + P (166)
with
Ji NG T
AVER = e 4 /W (167)
7 |7 — 7/
0
AVXCO - ch[pi,c’ pl—,c] (168)
and

by = (—2e27) 0t "Xl (169)
Here nﬁ and ,o’cI stand for the number of electrons included in the
core A and the corresponding core electron density, respectively.
Pi,c and p’l,lc are the corresponding spin-up and spin-down
densities, respectively, which can be evaluated from the core
orbitals analogous to eq 164 used for the valence densities.

For practical calculations the Coulomb and exchange-correla-
tion potentials are approximated as a linear combination of radial
Gaussian functions divided by r

AVEO(i) + AVEO (i) = —ZAi T (170)

Similar to the AIMP approach of Seijo and co-workers the
constraint Z;CAfC1 =7 - Q —n; is imposed to obtain the
correct asymptotic behav10r, where ncl denotes the number of
core electrons of core A. The core orbitals used in the shift
operator Pt are approximated by a linear combination of
Gaussian functions determined with a least-squares fit procedure.
Similar to the work of Seijo and co-workers the reference atomic
orbitals were obtained from CG/WB-type LSD VWN finite-
difference atomic AE calculations.®>®*

7.4. Model Potentials with Explicit Relativistic Hamiltonians
It is well-known that direct relativistic contributions originate
mainly in the vicinity of the nucleus. Those MPs, which keep the
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correct nodal structure of the valence orbitals, are therefore much
more suited for an explicit inclusion of relativistic effects than
PPs, for which the radial nodal structure of the pseudovalence
orbitals has been simplified, or some older MPs were due to
economic reasons nodal structure is not fully kept. Various
approximate relativistic AE schemes were combined with the
MP approach during the last two decades. Although the reported
results are generally very good, the usage of these approaches in
applications is rather scarce.

Wittborn and Wahlgren presented in 1995 relativistic AIMPs
for third-row transition metals where indirect relativistic effects
of the core on the valence orbitals were incorporated in the
potential, whereas the direct relativistic effects were treated
explicitly using the scalar-relativistic second-order DKH
(DKH2) Hamiltonian.'®® The AIMP included the 4s, 4p, 44,
Ss, Sp, 5d, and 6s orbitals in the valence space, but not the 4f
orbitals. The basis sets compared to AE reference calculations
could be significantly reduced. Atomic s*d"—s'd"*" HF energy
differences between the lowest LS states exhibited mean
absolute errors of 0.05 and 0.07 eV with respect to AE DKH2
results and the finite difference CG results of Martin and
Hay."*® In case of the monohydrides the AE and AIMP
DKH2 differ typically by 1 or 2 kcal/mol for HF, MCPF and
PCI80 binding energies. Whereas the AE and AIMP DKH?2
bond lengths of HfH to OsH agree within 0.01 A, deviations of
up to 0.04 A are found for LaH, IrH and PtH, with the AIMP
yielding the longer bonds.

Similar scalar-relativistic AIMPs to be used with the second-
order DKH (DKH2) Hamiltonian were presented for the first-,
second- and third-row transition metals by Rakowitz et al. using
a(n—1)p (n — 1)d ns valence space,"®* as well as a (n — 1)s
(n — 1)p (n — 1)d ns valence space."®® In test calculations for
the group S and group 10 transition metal oxides (VO, NbO,
TaO; NiO, PdO, PtO) the second choice was found to yield
superior results, especially it leads to a decrease of the dissocia-
tion energies of the early transition metal oxides bringing them
to better agreement with the AE DKH values. This finding
coincides with experience from PP calculations.'*733336:354

For lanthanides'®® and actinides,'®” scalar-relativistic AIMPs
to be used with the third-order DKH (DKH3) Hamiltonian were
derived by Seijo, Hirao and co-workers. The 4f, Ss, Sp, 5d, and 6s
shells of the lanthanides were treated explicitly in the valence
space (46 core electrons, [*°Kr] 4d'° core), whereas for the
actinides a 5f, 6s, 6p, 6d, and 7s valence space (78 core electrons,
[*Xe] 4f'* 5d'° core), as well as a 5d, Sf, 6s, 6p, 6d, and 7s
valence space (68 core electrons, [**Xe] 4f'* core), were applied.
For the actinides it was concluded that the larger core, which is
analogous to the one used for the lanthanides, is sufliciently
accurate. The accuracy of the approach was established by
comparing AE and MP orbital energies and radial expectation
values as well as by molecular calculations on CeO and ThO. It
should be noted, however, that changes of the f occupation
number were not considered in these tests. FC errors for Ce and
Th treated at the AE MCDHF/DC level amount to up to 0.44
and 0.27 eV, respectively.”” A SO treatment using the DKH-type
atomic mean-field approximation in a state-interaction method
was also proposed.*”’

The relativistic scheme by eliminating the small components
(RESC) of the Dirac equation advocated by Nakajima and
Hirao®* was also combined with the AIMP approach for Pt, Au
and Hg using a 5p, 5d, 6s valence space.*”!
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Figure 21. 6s pseudovalence orbitals of Pb in the 65> 6p” ground state
configuration for MCDHE/DC'7* and WB'*® energy-consistent and
LANL**® and SBKJC?*® shape-consistent four-valence-electron PPs in
comparison to the 6s large component from a multiconfiguration
Dirac—Hartree—Fock calculation with the Dirac—Coulomb Hamiltonian
using the program GRASP.®

8. COMPUTATIONAL DETAILS

8.1. Valence Basis Sets for Pseudopotentials

The optimization of reliable valence basis sets is as important
as the PP parametrization itself. Since the valence basis sets are
connected to the PPs for which they were optimized, we
described the available basis sets together with the corresponding
PP approaches in section 6. In this section, we will briefly discuss
some features common to all types of PPs. Several reviews on
basis sets apgeared, some of them address also basis sets for
modern PPs.*>~*7*

In most ab initio electronic structure calculations atom-
centered one-particle basis sets of Gaussian-type are used to
construct the molecular orbitals as a linear combination.***” One
important motivation for the usage of PPs is to reduce the
number of primitive basis functions in the integral evaluation in
comparison to AE calculations. Because of the simplified radial
nodal structure of the pseudovalence orbitals one might also
expect smaller basis set superposition errors, at least at the HF
level. Some of these advantages are usually lost when large
unoptimized basis sets, for example, even-tempered basis sets
or also AE basis sets, are applied in PP calculations. Because of
the completely different radial shape of AE valence orbitals and
PP pseudovalence orbitals in the core region, contracted AE sets
are usually not suitable for the PP case. Even uncontracted AE
sets yield sometimes higher total energies than smaller sets
optimized for the PP.

Because the non-uniqueness of the pseudovalence orbitals
discussed in section 5.3.1, these exhibit different radial shapes in
the spatial core region for the different PPs of a specific element,
despite equal core—valence separation, that is, despite an equal
choice of the core. Examples are provided in Figures 21 and 22
for the 65> 6p” ground state configuration of Pb. Although the
four PPs of different origin show a similarly good agreement with
the large components of the 6s and averaged 6p spinors of a state-
averaged MCDHF/DC calculation® in the valence region, they
differ substantially in the core region. Therefore only the usage of
valence basis sets optimized for the PP under consideration will
provide a reliable description, whereas the usage of basis sets
optimized for other PPs, even for the same core definition,
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Figure 22. Same as Figure 21, but for the 6p pseudovalence orbitals.
The AE 6p valence orbital is a 2j + 1-weighted average of the 6p; /, and
6ps3,, spinors.

frequently leads to relatively large errors in the total valence
energy.”” If a more extended basis set than provided for a specific
PP is desired, it is thus recommended to optimize and contract a
new primitive set, or if this is not desired to augment the original
basis sets coming with the PP.

It was pointed out by Christiansen, that care has to be taken
when augmenting small contracted basis sets with diffuse
functions.*”> Pseudovalence orbitals have a fundamentally dif-
ferent shape compared to AE valence orbitals in the core region.
For the shape-consistent approach this follows from their con-
struction according to eq 111 and the conditions imposed on the
function f;. Whereas nonrelativistic AE s orbitals have nonzero
amplitudes at the origin, p orbitals have nonzero first derivatives,
etc., the corresponding pseudovalence orbitals have zero values
in each case. Primitive Gaussian s functions, however, have their
maximum at the origin, where the PPs are usually most repulsive
for angular momenta present in the core. One therefore fre-
quently observes during basis set optimizations that two expo-
nents become nearly equal and the coeflicients attain a similar
magnitude, but are of different sign. To avoid such problems
some researchers used Cartesian Gaussian basis sets instead of
spherical ones,”’® for example, of the 6 and 10 Cartesian
Gaussian primitives arising for i + j + k = 2 and 3 in xi)/zk
exp(—0u?) the linear combinations corresponding to one 3s and
three 4p functions were kept in the basis in addition to the usual
five 3d and seven 4f functions, respectively. However, as was
pointed out by Christiansen, the problem is more complex and
besides one-center effects also two-center effects have to be
considered.*”

A nodeless s pseudovalence orbital described by a contraction
of Gaussian functions is often made more flexible by either
freeing the most diffuse s function from the contraction or by
adding a diffuse s function. In both cases, although the HF energy
remains the same or gets somewhat lower, the gain in the
correlation energy may be quite limited. The reason is that when
freeing the most diffuse s function from the contraction the lower
(occupied) orbital will have coefficients such that the amplitude
near the nucleus becomes nearly zero, whereas this is not possible
for the higher (virtual) orbital. This therefore experiences the
strong repulsion of the PP at the origin and gets a quite high
orbital energy. When adding a diffuse s function to an existing
contraction, which already has coefficients such that the

0.7 T T T T T T T
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o5 |-~ PP DHEDC+B 6p,, ]
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Figure 23. Same as Figure 21, but for the 6p;,, and 6p;,, pseudova-
lence spinors.

amplitude near the nucleus is nearly zero, no function is available
to compensate the nonzero amplitude of the added diffuse
function at the origin. Thus, again a high orbital energy results.
In both cases the virtual orbital is unfavorable for electron
correlation calculations. One solution is to use two primitives
|%m) and |¥,n—1), and contract them so that the amplitude at the
origin is zero, that, to use a so-called augmented primitive

) — (0 /0 )2 4y with o > 0 (171)

Here @, and 0,,_; denote the primitive exponents. This
prescription solves the atomic case, however in case of a molecule
diffuse orbitals on a neighboring center may have nonnegligible s
contributions on the PP center. If for the PP center only
contractions and augmented contractions with zero amplitude
at the origin are used, these cannot cancel the nonzero amplitude
of the diffuse orbitals on neighbor atoms. Therefore, Christian-
sen advocated for s type basis functions on PP centers not to use
augmented primitives, but rather a diffuse primitive and an
additional tight primitive in uncontracted fashion. The two-
center effect described here is less strong for p shells than for s
shells. For p Christiansen therefore favored the addition of an
augmented primitive, whereas for higher angular momenta the
diffuse functions can be selected as in AE work. Thus, according
to Christiansen at least a basis set with three s functions
(contraction, tight function and diffuse function) and two p
functions (contraction, augmented diffuse primitive) is needed
for a large-core PP description. The CI and MP2 correlation
energies of H,O and HI increased by 3—7% compared to those
obtained for an addition of single diffuse functions.*’”> We note
that the analysis is valid for small contracted basis sets, since in
most larger basis sets there are enough uncontracted functions to
achieve zero or near-zero amplitudes at the PP origin.

A related topic to the nonuniqueness of the pseudovalence
orbitals and the nontransferability of (contracted) scalar-rela-
tivistic valence basis sets from one PP to another, is the usage of
such basis sets in calculations with SO coupling. It can be seen
from a comparison of Figure 23 with Figures 21 and 22 that the
Pb 6p,,, and 6p;,, pseudovalence spinors differ radially as
much from each other, as well as from their scalar-relativistic 6p
counterpart, as the scalar-relativistic 6s or 6p pseudovalence
orbitals of different PPs do. Therefore similar problems are
expected when using a scalar-relativistically contracted basis
set in a two-component PP calculation for cases where the
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differences in the radial shapes of spinors are significant. It was
therefore suggested to use separate contractions forj=1—1/2
and j = | + 1/2 spinors.”” The problem was also discussed by
Armbruster et al.,”®” who added steep functions to their scalar-
relativistic PP valence basis sets.

8.2. Integrals over Ab Initio Pseudopotentials

To use a valence-only model Hamiltonian H, with ECPs in
standard quantum chemical calculations one needs to evaluate
the corresponding integrals over (Cartesian) Gaussian basis
functions. The integrals for semilocal PPs are more involved
than those for MPs, where only a local potential and in case of
AIMPs a nonlocal representation of the exchange has to be
considered.

The one- and two-electron integrals over Cartesian Gaussian
basis functions®® commonly encountered in quantum chemis-
try can be evaluated, e.g., according to the formalism developed
by McMurchie and Davidson.*”” Early computer codes for the
corresponding PP integral evaluation at the scalar-relativistic
level were developed by Kahn et al. (LPPOLY),"** Barthelat
et al. (PSIBMOL),**® Kolar (PSEPOT),**' and McMurchie
and Davidson (MELDPS).*** The latter approach was im-
proved and extended to calculate the integrals over SO PPs
by Pitzer and Winter.** An implementation of the McMurchie—
Davidson scheme for scalar-relativistic cases using partly quad-
rature instead of analytical integration was reported by Skylaris
et al.*’® Possible numerical instabilities occurring for exponents
of unusual size were discussed by van Wiillen.*’”® First and
second derivatives with respect to nuclear coordinates were
reported for scalar-relativistic PPs, for example, by Kitaura
et al.* and Cui et al,**' respectively, and for two-component
PPs by van Wiillen and Langermann.*** For atom-centered PPs
and basis functions the derivatives of the PPs can be formulated
in terms of derivatives of basis functions,**® which are for
Cartesian Gaussians linear combinations of (other) Cartesian
Gaussians. Therefore gradient contributions of PP integrals, both
one- and two-component, can be evaluated using a modified PP
integral code.

To simplify the integral evaluation Pélissier et al. transformed
the semilocal PPs into nonlocal form, so that the integral
evaluation consists only of the evaluation of overlap integrals.**”
This approach works well if the PP is only represented by
Gaussian functions, but is less accurate when prefactors as 1/r
or 1/r” are present as in some shape-consistent PPs and fails for
terms with 1/7* occurring in CPPs.

Integral formulas over the CPP with cutoff functions of Meyer
and co-workers were derived for Cartesian Gaussian functions by
Schwerdtfeger and Silberbach using a Laplace transformation. *****
Smit later also applied the method of McMurchie and Davidson
and presented formulas to evaluate CPP integrals,**> however a
corresponding implementation was not performed to our
knowledge.*** Integrals for CPPs with a I-dependent step cutoff
function were elaborated by Foucrault et al.'”’

Some older work was performed with Gaussian lobe
functions.’" The corresponding integrals over scalar-relativistic
and spin—orbit PPs are available from work of Chang et al.'"*
and Hafner and Schwarz,>** respectively, and those over CPPs
were given by Schwerdtfeger et al.””” A detailed review of the
methods of computation of the ECP and CPP integrals is
beyond the scope of the present review. In the following
sections, we just try to illustrate a few basic steps and refer for
details to the original articles.

8.2.1. Integrals Using a Nonlocal Representation. The
approach of Pélissier et al.*® uses a transformation of the atomic
semilocal part V;P; of the PP in eqs 75 and 78 into a nonlocal form

Vi =3 ¥ 4le)s| (172)

i

where the |g;) are orthonormalized linear combinations of
Cartesian Gaussian functions

<7|g1> _ ZBikxlixyliyzl,zefbMZ with lix + lzy + liz =1
k

(173)

The parameters in eq 173 are determined by minimizing the sum
S of squared differences of matrix elements over V; and V; for a
large atom centered basis set {|y;} of appropriate angular

symmetry |

$ = Yl Vil — Gl ViPil)* (174)

7
For applications the nonlocal operator Vs cast in simpler form
by diagonalizing the matrix of the coefficients A;

il = ¥ Alggl (175)

where A; and |§,> are the resulting eigenvalues and eigenvectors
of the [A;] matrix in the original {|g)} basis. The integral
evaluation in molecular calculations is thus reduced to the
calculation of overlap integrals between the molecular basis and
the expansion basis {|g)}. Similarly the evaluation of derivatives
of PP matrix elements with respect to the nuclear coordinates
which are needed in energy gradients for geometry optimiza-
tions involves only the computation of derivatives of these
overlap integrals.*”” The approach of Pélissier et al. is closely
related to the separable form of PPs developed in theoretical
solid state physics for usage with plane-wave basis sets,**¢~***
which is also useful for Car—Parrinello dynamics, **® see section
6.5.7.

8.2.2. Integrals over Scalar-Relativistic Pseudopoten-
tials. Considering unnormalized Cartesian Gaussian functions
on center A

(7lo(n,I,may,A)) = xig*)//‘;‘zi’*efu‘”"z (176)
with
7, = (xayaza) = 7 — A (177)

and analogously on B, and the semilocal PP eq 78 on center C,
one ends up after applying the expansion eq 89 with two basic
types of integrals to be solved, that , type 1 for the local part
without projector on C

Xap = <¢A|"Cn exp( - “TCZ)H’B) (178)

and type 2 for the semilocal part with projector on spherical
harmonics centered on C

+1 o
Vap = Z (¢, |lm, Cyrc" * 2 exp( — arc?){Im, Clyy drc

m= —1J0

(179)

Here the following abbreviation is used for the function resulting
from the angular integration of the product of the basis function
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¢, with the (real) spherical harmonics Y,,:
(b, m, C) = / 0, (D 14)Yin(Q0)dQc (150)

The basic steps for the evaluation of the type 1 integrals x5
according to McMurchie and Davidson*** are (1) the transfor-
mation of the exponential parts of |¢ 4 and |¢B> to the center C,
(2) the transformation of x, etc., to center C, and (3) the
expansion of the nonspherically symmetric part of the resulting
integrand in products of spherical harmonics and modified
spherical Bessel functions of the first kind. After separating the
angular from the radial variables of integration one ends up with
multiple sums over products of angular and radial integrals. The
angular integrals are of the type

+i
Q= 3 v [HEv @@ sy

u= -1

with €2 being determined by the positions and exponents of the
basis functions at A and B, A being the running index for the
expansion used in step (3) above, and & = x/r. The radial integral

is of the type
Qﬁl(k, o) = / ™ exp(— ou?)M; (kr) dr (182)
0

with k being determined by the positions and exponents of the
basis functions at A and B, o the sum of exponential parameters
of the basis functions at A and B and the PP term at C, and M; a
modified spherical Bessel function of the first kind.

The type 2 integrals Y45 are also reduced to multiple sums
over products of angular and radial integrals using the above-
mentioned three steps. Because of the presence of the projection
operator on center C, the resulting angular and radial integrals are
slightly more involved, since the expansion of step (3) has to be
applied twice, that is,

+A
Q= (41" ¥ Y@ [ FYEV @ (@)e

u= —21
(183)

and
QN (k) = / A exp( — o )M; (kar)My (kpr) dr (184)

McMurchie and Davidson showed that the angular integrals can
be readily evaluated in analytical form by expanding the Y;,, in
terms of X, ¥, and 2. The evaluation of the type 1 radial integral
Q¥ is relatively straightforward and leads to a product of a ratio
of gamma functions and a hypergeometric function. Using a
recursion relation for the modified spherical Bessel functions
McMurchie and Davidson could also derive a number of useful
recursion relations for the type 1 radial integrals. An additional
recursion relation was given by Pitzer and Winter.*** There is no
integration scheme suitable for all cases of the more difficult type
2 integrals QY. McMurchie and Davidson proposed three
schemes®* and a fourth one was suggested by Pitzer and
Winter.** Besides Gauss—Hermite quadrature, McMurchie
and Davidson used in their code a power series expansion of
one of the two modified spherical Bessel functions leading to a
reduction to a sum over type 1 radial integrals. Another variant
using power series expansions for both modified spherical Bessel

454

functions leading to a sum over hypergeometric functions was
also proposed. Pitzer and Winter were able to express the
integrals as a finite double sum over all positive contributions
containing Bessel functions. The corresponding integral codes
select for each case the integration scheme which is suitable in
terms of accuracy and computational speed, and of course make
use of recursion relations whenever it is possible. Skylaris et al.
proposed to evaluate eq 180 analytically on a radial grid and then
to apply quadrature to compute eq 179 directly without further
analytical manipulations.*”®

8.2.3. Integrals over Spin—Orbit Pseudopotentials. The
integrals over the spin—orbit operator can be factored into space
and spin parts. The choice of Pitzer and Winter was the
evaluation of the three components of the spatial part separated
from the spin part,*** which has to be generated later, e.g., in the
spin—orbit CI code.**® In the currently applied formalism based
on eqs 84 and 87 type 1 SO integrals do not occur. The spatial
part of the type 2 integrals is of the form

I

1 © .
v = 3% [ g i i X gy

m= —Im'=

(185)

Here a factor —i was inserted to make the integral real (note that
1= —i7 X V). The double sum over m and m’ contains a
maximum of (2 — 1) terms, because many of the matrix
elements (Im|]|Im’) are zero. Using the strategy of McMurchie
and Davidson,*** the integral can be reduced to a multiple
sum over products of angular and radial integrals, corresponding
to eq 181 and eq 182, respectively. To the three methods proposed
by McMurchie and Davidson for the evaluation of the radial
integrals, Pitzer and Winter added as a fourth method the
rewriting as a finite double sum over all positive terms containing
Bessel functions.*** Since this method is also not applicable to all
cases, Pitzer and Winter used also the expansion of one Bessel
function as a power series and the quadrature proposed by
McMurchie and Davidson, as well as a recursion relation involving
no differencing.

8.2.4. Integrals over Core Polarization Potentials. To
evaluate the matrix elements over the core polarization potential
Vepp €qs 97—100, one has to recognize that the two-electron
integrals can be traced to a product of two one-electron
integrals. The one-electron integrals are of the following two
basic types:

1
Wi = <¢A|VC74F2(7C)6)|¢B> and
Wi = (@l 5 0)l0y) (156)

with F denoting the cutoff function. Despite the absence of
projection operators the evaluation of CPP integrals is consider-
ably more complex than the one over the scalar-relativistic PPs
and SO PPs outlined in the last two sections. In 1988, Schwerdt-
feger and Silberbach succeeded in finding analytical expressions
for the above integrals by using a Laplace transformation**>***
and generated a working code available in the MOLPRO
program system. About a decade later Smit*** showed that these
integrals can also be calculated using the formalism of McMurchie
and Davidson,*** when a slight modification by Jensen et al.**’
is used.

The product of two Gaussians |¢,) and |¢5) centered at points
A and B, respectively, is first written as a new Gaussian |¢p) with
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exponent Op = (4 + Oy centered at point P, with QpP = QA +
apB. Similar to the scheme of McMurchie and Davidson |¢p) is
then expanded with respect to point C. According to Jensen et al.
the integral over an arbitrary (local) potentlal V(rc) can be
written for s-type Gaussian function |¢p) as

— o
s —a,|cp|* 2 —oprl
W,z = Eap2ite »[CPI / V(rc)re x e %c
0

1 —
X /em"‘cp‘rcudu drc (187)
-1

with E,p being a constant depending on the exponents and
positions of |¢4) and |pp). Smit gave corresponding analytical
solutions for the integrals wjp and w33 involving the error
function. The integrals for Cartesian Gaussian functions with [ >
0 can be written as a linear combination of the partial derivatives
of these integrals with respect to CP,, CP,, and Cp,.*%s

8.2.5. Derivatives of Pseudopotential Integrals. Moro-
kuma and co-workers pointed out that integrals over derivatives
of ECPs may be complicated, but nevertheless they can be
easily evaluated when the translational invariance of the matrix
elements is exploited.480 For instance, the translational invar-
iance in x-direction requires that the first derivatives of an ECP
matrix element with respect to the x-coordinates of the nuclei D
sum up to zero

0 .
%%<¢A|VC|¢B> =0 (188)

from which the expression

Wel, \ (Mg o2
q)A Oxc ¢ - (<8xAVC|¢B> + <¢A|Vcax3>)
(189)

can be derived. In case of Cartesian Gaussian functions the
derivatives occurring on the right side are just linear combina-
tions of other Cartesian Gaussian functions, for example, for
eq 176 one obtains

d
$<?|¢(n)l)m)aA)A)> = (1
in + 1 ja_ka —our;

— 204, Az e

Oi0)als ~ yare o
(190)

A similar strategy can be used to evaluate higher derivatives.*!

Contributions of ECPs to gradients of the total energy can thus
be readily evaluated with a modified ECP integral code.

8.3. Computational Schemes

Figure 24 shows schematically the major sequences (I—IV) of
computational steps in relativistic ab initio electronic structure
calculations. Hereby it is assumed that a relativistic and correlated
calculation is to be performed, the result of which can be
compared to experimental data. In Figure 24, the entry config-
uration interaction stands for a wave function-based correlated
calculation such as CI (configuration interaction), CC (coupled
cluster), or many-body perturbation theory (MBPT). Similarly,
the entries Dirac—Hartree—Fock and Hartree—Fock also stand
for their multiconfiguration analogues. The most rigorous strat-
egy (IV) are 4-component AE DHF calculations followed by CI,
CC, or MBPT in the basis of the spinors corresponding to the
electronic one-particle states. Although 4-component ECPs can
be derived and applied in corresponding calculations with an

integral evaluation
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Figure 24. Schematic overview of relativistic quantum chemical ab
initio approaches accounting also for spin—orbit coupling. Four major
sequences (I—IV) of calculation steps exist, which lead to an increasing
accuracy, but also require an increasing computational effort.

explicit treatment of relativistic contributions,'®' and even CI
calculations have been performed,'® a much more eficient
modeling of the AE case is the usage of 2-component ECPs with
an implicit treatment of relativistic contributions (III). Such an
approach was early advocated by Hafner, Schwarz, and
Esser,*****7*% who developed and implemented a GUGA-
based MRCI code. The code was later extended to perform, e.g,,
ACPF calculations.*"! Implementations of several electron cor-
relation schemes based on Kramers-restricted (KR)*' and
Kramers-unrestricted (KU)*** HF solutions were developed by
Lee and co-workers, that is, KRMP2,** KUMP2,** KRCI,**
KRCCSD and KRCCSD(T),** as well as KRCASSCF.*¢*7
These implementations partly made use of the infrastructure
provided by the MOLFDIR relativistic AE package.””> A two-
component HE SCF*'7 and energy-gradient** code was re-
ported by van Wiillen and co-workers. An efficient DFT version
suitable for the treatment of larger systems was also described.*”®
Recently, an implementation of MP2 using two-component
f(r12)-dependent wave functions (SO-MP2-F12) starting from
a two-component HF SCF solution*”” was reported by Bischoff
and Klopper.>”

Although the computational effort of the final correlation step is
the same for both the AE and ECP case, provided an identical
number of electrons is correlated in an identical number of orbitals,
large computational savings arise in ECP schemes at the three
earlier stages of the calculation, i.e., integral evaluation, HF step
and integral transformation. In addition, in particular in PP
approaches effective one-particle operators are used instead of
the AE operators, which might consist of or include two-particle
terms (e.g, the Breit interaction). The requirements for the
correlation are therefore actually smaller than in the corresponding
AE case, thus leading also here to computational savings. Since for
the cases IV and III the SO interaction is already treated at the HF
level, the wave function has a high flexibility and can accurately take
into account the relaxation of the orbitals under the influence of
SO effects. The approaches are especially useful for heavy and
superheavy elements, where SO effects are very large and poten-
tially more important than electron correlation effects.
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The computationally cheapest approach on the contrary
assumes only very small SO effects, which essentially do not
lead to a relaxation of the orbitals and only cause small energetic
changes. Scalar-relativistic HF calculations are followed by CI,
CC or MBPT in the LS or AS coupling scheme using a basis of
determinants (dets.) or configuration state functions (CSFs). If
SO contributions are of interest these are either evaluated by
(quasi-degenerate) first-order perturbation theory using the
correlated wave function(s) as zeroth-order wave function(s)
or in a usually small SOCI in the basis of the correlated many-
electron LS or AS states (I). This approach, which can be
routinely performed today with most standard quantum chemi-
cal ab initio packages, assumes that electron correlation is much
more important than SO interaction. The basic principles for
such calculations using PPs were written down by Ermler
et al.”*® and applied to TIH.**" Shortly thereafter the CIPSO
approach of Teichteil and co-workers, based on the efficient
selecting CI approach CIPSI, was designed, implemented and
applied.””"%%% Since orbital relaxation in presence of the SO
terms may not be sufficiently accounted for in the CIPSO
approach, Vallet et al. presented the EPCISO approach as an
extension which includes also all single excitations in the many-
electron basis set.>*?

For cases intermediate between I and Il Chang and Pitzer**
suggested to treat SO effects and electron correlation on equal
footing by diagonalizing in a double group CI (DGCI) a large
Hamiltonian matrix including the SO terms (II) in a determi-
nant basis (dets.) or, better, in a basis of double-group adapted
(many-electron) functions (DGAFs). Seijo and co-workers
formulated and implemented a spin-free state shifted (SFSS)
effective Hamiltonian version, which can exploit results from
large-scale scalar-relativistic calculations.””® A parallel version
of the DGCI code increasing the capabilities of the original code
by about 3 orders of magnitude was reported by Tilson et al.>**
A GUGA-based variant allowing significantly longer CI expan-
sions was developed by Yabushita and collaborators.>*> An
efficient implementation of a determinant-based CI including
SO contributions was also reported by Sjevoll, Gropen and
Olsen.**® The approach II was found to be useful and suffi-
ciently accurate for most heavier elements of the periodic table
up to the actinides. Especially for open f shells with more than
one electron or hole the large number of LS or AS states to be
correlated prior to the SOCI in the more efficient scheme I may
exceed the computational capabilities, and scheme II might
become advantageous.

It has to be noted that when all possible states and excitations
are taken into account the CIPSO, DGCI and KRCI approaches
will yield the same result, that is, for ECPs with an implicit
treatment of relativistic contributions the paths I, II, and III lead
to the same answer; however, in very expensive calculations. For
practical calculations the three different paths allow to neglect
unimportant contributions at different stages of the calculation
and thus may gain efficiency compared to others if applied to a
suitable problem.

For DFT approaches Figure 24 could be truncated after the
HF steps, which would then be replaced by corresponding KS
calculations, resulting in three major computational schemes,
i.e., scalar-relativistic KS (I,II), [quasi]relativistic KS (III) and
relativistic DKS (IV). ECPs could be used in all three schemes
in principle, however, the scalar-relativistic ECP KS approach
is by far the most popular and a standard approach of
computational chemistry. However, the development of

6

quasirelativistic ECP KS approaches has recently received
more attention.*”**?

When applying the above schemes in connection with ECPs it
is important to check if the chosen approach is compatible with
the available SO operator. In many cases ECPs are supplemented
by SO operators which are suitable only for usage in first-order
perturbation theory or should act only on certain (valence)
shells."*”~ " Such operators should be applied only for path I in
the framework of a first-order perturbative treatment of the
SO effects or a small SOCL Marian and Wahlgren'* and
Schimmelpfennig et al.'*’ devised a scheme which allows to
replace PP by AE SO integrals in the framework of an effective
one-electron (mean-field) SO Hamiltonian, which might be
helpful if no PP SO term is available or if it is considered not
to be accurate enough.

Despite the increased availability of codes that are able to
include SO effects, the by far majority of ECP and AE studies
neglects these and stays at the scalar-relativistic (or even non-
relativistic) level, for which all computational first-principles
approaches of nonrelativistic quantum chemistry can be applied.

9. ACCURACY AND CALIBRATION

ECPs are usually adjusted for atoms, mostly in the framework
of the independent-particle approximation. Calibration of ECPs
in atomic and molecular calculations going beyond the indepen-
dent-particle level are necessary to check the transferability of the
ECPs and to estimate possible errors in subsequent applications.
For calibration studies a major problem is to distinguish between
errors of the Hamiltonian used (e.g., variants of relativistic AE or
ECP approaches), the applied computational method (e.g,, HF
as well a variants of CI, CC, MBPT, or DFT), and the applied
basis sets used to cast the equations to be solved into matrix form.
Comparison to experimental data is informative, but because of
the necessary incompleteness of the applied basis sets and the
usually only approximate treatment of electron interactions it
does not allow to conclude unambiguously about the quality of
the applied ECP. In addition, especially for actinides and of
course for superheavy elements, suitable accurate experimental
data is often missing or incomplete. Therefore, although for
applications it is good to know that a specific combination of
ECPs, basis sets and computational method yields results in good
agreement to experimental data, for the development of accurate
ECPs it is often more helpful to compare to AE reference data. In
view of Figure 1 it is important for an unbiased comparison of
two approaches to ensure that the calculations correspond to the
nearby points in the planes defined by the Hamiltonians. This
may be achieved by using, for example, corresponding correla-
tion-consistent basis sets and the same correlation method at the
ECP and AE level. Unfortunately, for most of the ECPs only a
very limited choice of suitable basis sets exists and the checking of
basis set completeness errors is therefore quite difficult. Ideally
the AE Hamiltonian used to produce the reference data for the
ECP calibration should correspond to the one used to generate
the reference data for the adjustment, since otherwise errors due
to the ECP and differences between the AE Hamiltonians cannot
be separated. In some cases this is not possible, since the AE
Hamiltonian used for the atomic adjustment cannot be applied in
corresponding molecular calculations, and thus the comparison
has to be made to data obtained with another Hamiltonian
aiming to describe the same effects. For example the CG and WB
Hamiltonians can only be used to generate atomic relativistic HF

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480
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reference data, and molecular calibration of the ECPs has to be
with respect to (spin—orbit averaged) results for the DC
Hamiltonian, or an approximation to it as the DKH Hamiltonian.

In the following sections we try to establish the present
limitations of accuracy of ECPs using the U atom as an example,
discuss briefly available computational schemes to perform
correlated atomic and molecular calculations including SO
effects, and report on the accuracy of valence correlation energies
in ECP approaches. We then summarize a few recent calibration
studies for main group and transition elements demonstrating
the accuracy of modern ECPs.

9.1. Limitations of Accuracy

Before using ECPs in molecules or solids it is important to
know how well the chosen approach can reproduce atomic AE
results, especially how accurate was the adjustment to the atomic
AE reference data. The requirements concerning the accuracy of
ECPs changed drastically during the last decades, with a clear
trend toward higher accuracy by using more elaborate relativistic
Hamiltonians to generate the reference data, smaller ECP cores
to avoid FC errors, and also larger parameter sets in order to
obtain a good fit. Therefore it is important to investigate which
effects are large enough at the AE level to be included in the ECP
adjustment.

A recent example for the accuracy which can be achieved by an
ECP is provided by an energy-consistent small-core 32-valence-
electron PP for U adjusted to MCDHEF reference data obtained
with the Dirac—Coulomb—Breit (DCB) Hamiltonian.'*>*%” U
is chosen since both correlation and relativistic effects, including
SO effects, are large and because of the extension of the valence
shells over three main quantum numbers (5f, 6d, 7s) an accurate
adjustment is not trivial. The PP discussed here has an accuracy
which is probably at the border of what can be reached with a
semilocal ansatz for U. Shape-consistent PPs, based on DCB AE
calculations, which aim to reach a similar accuracy were derived
by Titov and co-workers.'”® Other PPs and MPs for U do not
include the Breit interaction or even use Hamiltonians which
merely approximate the DC Hamiltonian, and use larger and less
accurate cores.

A detailed description of the energy-consistent fitting proce-
dure used for U was recently published®" and only a brief
summary will be given here. The small core (60 core electrons)
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was motivated by frozen-core AE calculations using various core
definitions. When 5f and 6d occupation number changes are
considered, only this small-core definition leads to errors in
energy differences of less than 0.01 eV.>%3! The reference data,
MCDHE total valence energies calculated with the finite Fermi
nucleus DC Hamiltonian and the Breit term in first-order
quasidegenerate perturbation theory, was obtained for 100
nonrelativistic configurations for the neutral U atom to the 7-fold
charged U”™* cation. These corresponded to 30190 J levels
stretched over an energy interval of about 600 eV. Using 56
adjustable parameters the accuracy of the fit measured by the
mean root square error was 300 cm ' (0.037 eV) for the
individual J levels and 16 cm ™" (0.002 eV) for the averages
corresponding to nonrelativistic configurations.'**®” These
errors are of similar magnitude as corresponding FC errors in
AE DHF/DC+B calculations.”® A pictorial summary of the
accuracy of the fit is provided by Figures 25 and 26 for the
configurational averages and the individual J levels, respectively.
Figure 25 can be compared with corresponding data for 29
nonrelativistic configurations for the shape-consistent GRECP
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Chemical Reviews

T T T T T T T
20 T T T o

_ 40 - o st
> - * ok — il
o) 10_ o 6 02-*-00 S X sz
2 0+ + Tt + 4 |0 5f
'z |+ +H+ G + o + fg
£ 20| 10k%0o 8 g« o ] ot .
e L & o« O e st
g 201 o J*0 4 xsP
= I

o+ 30l I _
kS 305 10 20
8 (] o [m]
2 .
2 é';g% b
— L -
E 20 D)E‘ |:||:' o [u]
54 [u]= ] DE

oo o
_40 1 L 1 " 1 n 1 L 1 " 1 " 1
0 100 200 300 400 500 600

energy relative to ground level (eV)

Figure 28. Effect of (Dirac and Breit) relativity on the average energies
of 100 configurations of U to U”* with respect to the U 5f° 6d" 7s>
configuration at the MCDHEF level calculated with the program
GRASP.®

0.4| 'D T T T T T
- I%l 5
<o | @o0 Db Bs i
g 03 £g8 o o x of
= [ _x
S 0oL ° g o sf| |
2 02 + 5¢
g o st
£ 0.1 s
= Qo * 5f
5 L
3
kS 0'0¥+
- L
g»o.l—:f -
£ | .
S 02k o
_03| " 1 " 1 L | " 1 " 1 " 1
~0 100 200 300 400 500 600

energy relative to ground level (eV)

Figure 29. Effect of the Breit interaction on the average energies of 100

configurations of U to U”* with respect to the U 5> 6d' 7s> configura-
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83

program GRASP.

published by Mosyagin et al.,'*® which shows despite the use of a
small core significantly larger errors depending very system-
atically on the Sf occupancy, see Figure 27.

Figure 28 clearly shows that the relativistic effects in the
spectrum of U are about 4 orders of magnitude larger than the
errors of the PP fit displayed in Figure 2S. The relativistic
contributions were evaluated as the difference of results from
DHEF/DC+B calculations and corresponding calculations achiev-
ing the nonrelativistic limit by multiplying the velocity of light
with a factor of 10° It is seen that relativistic contributions fall
into groups depending on the Sf occupation, with Sf* cases near
zero, since the energies were calculated relative to the sf6d' 7s”
ground state configuration. Cases with higher and lower Sf
occupation are destabilized and stabilized by relativity, respec-
tively. Note that even for low-energy excitations and ionizations
the relativistic contributions may exceed the value of interest
itself and thus cannot be neglected for a realistic modeling of U.

The contributions of the Breit (two-particle) interaction
shown in Figure 29 are about 2 orders of magnitude less
important than the Dirac (one-particle) contributions but are
certainly necessary for an accurate description of U. Since they
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Figure 30. Effect of a finite Fermi-type nuclear charge distribution on
the energies of the lowest J-levels of 100 configurations of U to U”" with
respect to the U 56 6d' 75> configuration at the MCDHE/DC+B level
calculated with the program GRASP.*?

are still about 2 orders of magnitude lar%er than the errors of the
PP fit, they can be safely included.'***”* Again, the Breit
contributions fall into groups depending on the 5f occupation,
with Sf> cases near zero. In contrast to the Dirac (one-particle)
contributions dominating in Figure 28, the cases with higher and
lower 5f occupation are stabilized and destabilized, respectively,
by the Breit (two-particle) contributions. It is obvious that ECPs
perfectly adjusted to (approximate) DC reference data will
exhibit errors in excitation energies and ionization potentials of
roughly 0.1 eV for every change of the 5f occupation by one unit.
The same is of course true for AE Hamiltonians omitting the
Breit term. These differences should be considered when com-
paring the performance of ECPs which are based on different
relativistic AE models. This detail is important for an unbiased
comparison, but is sometimes overlooked.'*®

Finally, the contributions of a finite nuclear charge distribution
displayed in Figure 30 exceed for not too highly ionized cases the
errors of the PP fit still by about 1 order of magnitude. For all
cases of chemical interest the contributions stay below 0.05 eV.
This order of magnitude roughly corresponds to the accuracy of
modern ECPs, which consequently also include finite nucleus
contributions in the reference data,'*****

9.2. Scope of Applications

ECPs are usually adjusted to atomic reference data and later
used in molecular calculations. A basic requirement for a good
ECP is certainly that it is transferable and yields accurate
energetic and structural data for the molecular case. Beyond this
one may ask which properties, except the total valence energy
and its derivatives with respect to nuclear coordinates, one can
calculate with an ECP. It is clear, that due to the elimination of
the core electron system ECPs cannot yield answers for proper-
ties which depend on the presence of the core. An example is the
topological analysis of the electron density according to Bader,***
in which large-core PPs (and most likely also MPs) may fail to
yield bond critical points.**”*'® It was pointed out by Frenking
and co-workers that small-core PPs perform well and that the
erratic behavior of large-core PPs can be corrected by simply
adding core electron densities obtained from atomic calculations,
or by adding a core-like density obtained from core orbitals
orthogonalized to the pseudovalence orbitals.”'® The addition of
core or model core densities to obtain good energetics but also
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ground state configuration from state-averaged multiconfiguration Dirac—
Hartree—Fock/Dirac—Coulomb calculations®® in comparison to pseu-
dovalence functions obtained from corresponding valence-only calcula-
tions with a two-component Dirac—Hartree—Fock/Dirac—Coulomb—
Breit adjusted small-core pseudopotential.**®

reasonable properties with DFT-based large-core PPs in solid
state physics applications was also discussed by Louie et al.**° It
was also observed that large-core PPs may lead to unreasonable
Mulliken charges of atoms, whereas the results for small-core PPs
correspond more to the common expectations.509

There are also other cases where core orbitals exhibit non-
negligible contributions to properties. For example, it was
pointed out recently by Schwerdtfeger and co-workers that core
contributions cannot be neglected in quadrupole moments of
heavy elements such as Au and their compounds such as AuF.>"'
The multipole moment operator is given as”"

Mun = ¥ gy, (191)
i

The expectation value has to be evaluated by summing over all
charges in the system, i.e., electrons and nuclei. Schwerdtfeger
et al. compared AE DKH2 data to energy-consistent™" and
shape-consistentzgé’354 small-core PP results for HF, MP2 and
various density functionals. In case of AuH maximum deviations
0f2%, 11%, 6% and 2% were observed for the HF dipole moment
U, quadrupole moment Q_,, octupole moment O,_, and hex-
adecupole moment H,, ., tensor components, respectively.
Similar errors were observed for magnetizabilities. In contrast
to the work of Schwerdtfeger and co-workers excellent results for
dipole and quadrupole polarizabilities were obtained for the rare
gas atoms Ne, Ar, Kr, and Xe with large-core PPs and CPPs by
Nicklass et al.**® The failure observed for the quadrupole
moment of Au was mainly attributed by Schwerdtfeger et al. to
the [*°Kr]4d'°4f** core, which contributes with 15% to the final
result at the AE level, and to a lesser extent from the use of
pseudovalence orbitals. CPPs have been shown to improve
ionization potentials and excitation energies even for the not
very golarizable Ne-core used in small-core 3d transition metal
PPs,”*® and one might thus wonder if the inclusion of quadrupole
corrections in the CPP used by Stoll and co-workers successfully
for Cu and Ag one-valence-electron PPs**® might help also in
case of the Au small-core PPs. Dipole moments, as well as static
dipole polarizabilities, are routinely calculated with ECPs, pos-
sibly supplemented by CPPs, and for suﬂicientlgf large basis sets
usually reliable results are obtained,'%*%>2%%5!
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Figure 32. Errors (%) of orbital energies, {1/r)-, {r)-, and {r*)-expecta-
tion values for U from two-component calculations with a Dirac—
Hartree—Fock/Dirac—Coulomb—Breit adjusted small-core pseudo-
potential®** in comparison to values from state-averaged multiconfigura-
tion Dirac—Hartree—Fock/Dirac—Coulomb calculations.®®

For properties that depend essentially only on the valence
orbitals and their shape no difficulties should arise for MPs, which
keep the correct radial nodal structure of the orbitals. For
example, Krause and Klobukowski reported an agreement within
1% for (") (n = —3, —2, —1, 1, 2) expectation values from AE
and MP calculations.”'* Therefore operators taken directly from
the AE framework, for example, effective SO operators with a 1/
r* singularity, can be applied. In case of PPs, a formal transforma-
tion to pseudovalence orbitals with a simplified nodal structure in
the spatial core region is performed, thus requiring in principle
also the use of accordingly transformed operators, for example,
the effective SO operators with a Gaussian-type radial behavior.
Figure 31 compares for U the radial densities of the original AE
valence orbitals/spinors and the PP pseudovalence orbitals/
spinors for an energy-consistent small-core MCDHF/DC+B-
adjusted PP.>>* Although only total valence energy data entered
the fit the radial shape of the original AE orbitals/spinors and the
PP pseudovalence orbitals/spinors is nearly identical in the
chemically relevant spatial valence region. A similar performance
is generally observed for shape-consistent PPs, which are ad-
justed to reproduce the correct radial shape of the original AE
orbitals/spinors in the valence region for a selected reference
state. Operators that sample essentially the valence region usually
give reasonable results even without transformation, whereas
those which sample the core region will not.

The accurate long-range shape of the pseudovalence orbitals is
reflected by the (r)- and (r*)-expectation values, which in case of
the U small-core MCDHF/DC+B-adjusted PP deviate by less
than 1% from the AE reference values, see Figure 32. The
deviations for the semicore shells Ss, Sp and 5d are with up to
4% somewhat larger. Pseudovalence orbital energies are deter-
mined by the long-range shape of the orbitals and due to their
accuracy exhibit errors of less than 2%. The correct shape of the
pseudovalence orbitals in the valence region, their accurate
orbital energies as well as the accuracy of the total valence
energies for various atomic states leads to a high transferability
of the PPs from atoms to molecules, and molecular properties,
such as bond distances and angles, binding energies, and vibra-
tional frequencies, are very well reproduced.

In contrast very large deviations are observed for (") (n < 0)
expectation values in PP approaches. These expectation values
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Figure 33. 2s*2p product of radial functions for C in the 2s* 2p*
ground state configuration. Results for the DHF/DC (SDF)*** and
WB'* energy-consistent and SBKJC286 shape-consistent PPs are
compared to AE DHF/DC results obtained with the program
GRASP.*® The numbers in the legend are the radial overlap of the 2s
and 2p radial functions.

have large contributions from the region near the nucleus, where
the nodes of the AE valence orbitals were removed to obtain the
pseudovalence orbitals, see Figure 32 for (1/r). An example is the
SO operator, where in PP approaches either an effective nuclear
charge has to be used to correct the wrong (1/ ) values, 3”140
or effective (transformed) operators are constructed.*****®
Similarly, the removal of the inner nodes causes large deviations
of PP expectation values of derivatives (d™/dr™), for example, the
(nonrelativistic) virial theorem (V) = —2(T) does not hold in PP
calculations. In general expectation values (+"d"/d+™) from PP
calculations are meaningful only for (n — m) = 0, whereas for
(n — m) < 0 either effective (transformed) operators have to be
developed or the original radial structures of the valence orbitals
have to be (approximately) reconstructed.>"> "

Although core-like properties related to a specific core/
nucleus cannot be calculated when a PP is used for this center,
it is still possible to calculate such properties for other centers
with light nuclei treated at the AE level, and account for the
influence of heavy atoms in the vicinity with relativistic PPs (or
MPs). Such an approach was pioneered for nuclear magnetic
resonance (NMR) shielding factors and chemical shifts in the
framework of DFT by Kaupp and co-workers,”'® >** who
evaluated 'H, °C, 70O, 'F, and *'P chemical shifts using
scalar-relativistic PPs for other heavy nuclei. Later the approach
was refined by including SO effects via PP SO operators.*** In
some studies of uranium complexes small-core PPs were found to
yield more reliable results than large-core PPs.>*>3*

Whereas in NMR shielding tensors and corresponding chemi-
cal shifts one looks at the interaction of a nuclear magnetic
moment with an external magnetic field, it is the spin magnetic
moment interacting with an external magnetic field that is
considered for the evaluation of electron spin resonance (ESR)
g tensors and corresponding g shifts. The conceptual relationship
and the valence nature of these properties is discussed in an
overview by Schreckenbach and Ziegler.**® Similar to their use in
the calculation of NMR chemical shifts ECPs including SO terms
can also be used to evaluate ESR g shifts, which was first
demonstrated in DFT calculations by Malkina et al.>*’ Finally,
hyperfine coupling tensors describing the interaction of the

700
F, 1 AE ]
600 - EC-PP |
. SC-PP (CEP)
cl 1 SC-PP (HW)

wn
(=3
(=]

400

o3 )
(=3 (=3
(=] (=]

)
S

valence correlation energy (milli-Hartree)

1234 1234 234 234
maxium angular quantum number in basis set

Figure 34. Total valence correlation energies of halogen dimers X, (X =
F, Cl, Br, I) from AE and PP CCSD(T) calculations using large
uncontracted basis sets.”*'

nuclear magnetic moment with the spin magnetic moment can
be evaluated for light atoms treated at the AE level, whereas the
effect of heavy nuclei in the neisghborhood is described by
relativistic ECPs and SO terms.**®>*

9.3. Valence Correlation Energies

A quite long-standing question is the overestimation of
exchange integrals, and as a consequence of correlation energies
as well as multiplet splittings due to the use of pseudovalence
orbitals in PP calculations. The problem was detected indepen-
dently by Pittel and Schwarz**® and Teichteil et al.>** It seems to
be especially severe when exchange integrals between pseudo-
valence orbitals and unchanged valence orbitals are evaluated, for
example, for the 2s and 2p orbitals of the first-row main group
elements. In case of a He-core, one radial node is removed from
the 2s AE valence orbital to yield a nodeless 2s pseudovalence
orbital, whereas the nodeless 2p AE valence orbital is essentially
identical to the one used in the PP calculation. In exchange
integrals products of the 2s and 2p orbitals appear. Since at the
AE level, 2s has both positive and negative contributions, the
resulting part of the integrand has too, whereas this is not the case
at the PP level. Figure 33 compares the 2s*2p product of radial
functions for C of AE and various PP calculations. The classical
example found by Pittel and Schwarz is F**, for which the valence
correlation energy is overestimated in PP studies by approxi-
mately 20%.>*° However, already Teichteil et al. found in their
correlated PP calculations of the halogen dimers X, (X = F, Cl,
Br, 1) that although the valence correlation energies are over-
estimated by about 10%, the AE correlation effects on the bond
lengths, force constants, and dissociation energies are perfectly
mimicked in the PP approach.

Systematic studies of the first-row main group elements
Li—Ne, as well as the halogens F—I indicate that for modern
PPs'#8287:333,33%355 applied to neutral atoms in ground and low-
lying excited states, anions and monocations as well as to
homonuclear dimers the resulting errors in the total valence
correlation energies are at most 9%. Moreover, for energy
differences these errors often cancel, so that for excitation
energies, electron affinities, ionization potentials and binding
energies errors of less than 0.1 €V arise.”>"**> An example is
illustrated in Figures 34 and 35 for the total valence correlation
energies and the correlation contributions to the binding

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480
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Figure 36. 65*6p product of radial functions for Pb in the 6s> 6p*
ground state configuration. Results for MCDHE/DC'"* and WB™®
energy-consistent and LANL**® and SBKJC** shape-consistent PPs are
compared to AE DHE/DC results obtained with the program GRASP.*?
The numbers in the legends are the radial overlap of the 6s and 6p radial
functions.

energies for the halogen dimers X, (X = F, Cl, Br, I),
respectively.*>' The comparison of PP and AE values is made
at the CCSD(T) level using large uncontracted sp, spd, spdf, and
spdfg basis sets.

The errors found in PP studies are similar in magnitude to
those found in corresponding MP calculations.”***** Whereas
the pseudovalence orbital transformation used in the PP ap-
proach mixes core orbital character to both the valence orbitals
and the virtual orbitals, the MP approach shifts the core orbitals
in their entirety to the virtual space and also uses these in wave
function-based correlation calculations. This most likely also
leads to a slight overestimation of valence correlation energies,
for example, MP calculations using AE basis sets were found to
overestimate the correlation energies of P, As,, and Sb, by 2.8
(4), 48 (6), and 7.6 (11) mH at the CISD (MP2) level,
corresponding to a maximum deviation of 4.8(6.0)%.”'* The
significant errors in total valence correlation energies in PP
calculations of up to 25% found by Klobukowski®** and discussed
by Seijo and Barandiarin>** could be shown to be due to a
truncation of the virtual space.”*"**

Table 16. HF Bond Lengths R, (A), Vibrational Constants o,
(cm™ '), and Binding Energies D, (eV) of the Halogen
Hydrides HX (X = F, Cl, Br, I, At) Obtained from AIMP CG
Calculations with nsnp (F, CL, Br) and (n — 1)dnsnp (I, At)
Valence Space'*® in Com7parison to Scalar-Relativistic AE
DKH2 Reference Data>>"*

R. We D,

HX AIMP DKH2 AIMP DKH2 AIMP DKH2

HF 0.896 0.897 4526 4477 4.32 4.40
HCl 1.275 1.264 3097 3139 3.33 3.54
HBr 1.414 1.404 2745 2789 2.85 2.98
HI 1.603 1.599 2439 2451 2.35 2.47
HAt 1.692 1.682 2259 2297 2.09 2.15
m.a.e. 0.007 39 0.12

“Data taken from Seijo'*® and Dolg**” Mean absolute errors are listed
in the last line. The AIMP basis sets are of pVTZ quality, whereas large
uncontracted basis sets were used for the AE DKH2 reference
calculations.

It should be noted that for modern energy-consistent PPs
multiplet splittings, and thus indirectly also exchange integrals,
enter into the reference data, which avoids severe overestima-
tions. Moreover, for heavier elements often exchange integrals
are evaluated between two pseudovalence orbitals leading to
smaller deviations from the AE case. This is obvious from a
comparison of the 6s*6p product of radial functions for Pb
displayed in Figure 36 with Figure 33 for the 2s*2p product of
radial functions for C. In addition, modern PPs use small cores,
that is, they leave some radial nodes in the pseudovalence
orbitals, which also reduces the errors in the exchange integrals.
This is supported by the observation of Rohlfing et al. that small-
core PPs for Ni, Pd, and Pt allow a more consistent treatment of
correlation than the corresponding large-core ones.>*> Although
further detailed investigations, for example, for transition metals,
as well as lanthanides and actinides, are still missing, one may
expect that the overestimation of valence correlation energies in
PP approaches frequently mentioned in the introduction of MP
publications***~***5? are not as severe as initially expected.

9.4. Calibration: Main Group Elements

ECPs are routinely used in electronic structure calculations for
main group and transition metal compounds and a very large
number of applications exists.'”**"3**>3¢ The reliability of the
ECPs is manifested in most of these studies simply by compar-
ison of the results to available experimental data. Instead of
selecting some of these studies as examples, we focus on a few
calibration studies. Whereas for every set of ECPs calibrations
with respect to AE or experimental reference data have been
performed, studies with a direct comparison of different ECPs are
quite scarce.'7>?89282331 1 order to arrive at a comparison it is
therefore necessary to combine the results from different studies,
which certainly bears the risk of a bias because of not completely
equivalent applied computational approaches.

Seijo presented results obtained with CG- and WB-adjusted
AIMPs for the halogen hydrides at the HF and CIDBG(SD)
levels of theory."*® The HF results for the scalar-relativistic CG-
AIMPs using about pVTZ basis sets can be compared to scalar-
relativistic AE DKH2 reference data, which was obtained with
large uncontracted basis sets.>*” Table 16 lists some of the results
for bond lengths R., vibrational constants w,., and binding
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Table 17. Root Mean Squared Errors for Theoretical Values
of Bond Lengths R, (A), Vibrational Constants w, (cm '),
and Binding Energies D, (¢V) of the Halogen Hydrides HX and
Dimers X, (X = F, Cl, Br, I) Obtained from Two-Component
Calculations with Large-Core Energy-Consistent WB PPs and
CPPs'*'*® with Respect to Experimental Data®

R. e D.

method basis HX X, HX X, HX X,

PP+CPP,CCSD(T)+SO uncontracted 0.006 0.004 22 S 0.01 0.04

PP+CPP,ACPF+SO  uncontracted 0.007 0.004 19 3 0.01 0.09
PP+SO+CPP,CISD pVTZ 0.005 0021 39 90 0.14 098
PP+SO+CPP,CISD+Q  pVTZ 0.003 0025 19 8 004 0.53
WB AIMP,SO—CIDBG pVTZ 0.008 55 042

AE,DHF,CISD (aug-)pVTZ 0.026 97 1.09
AE,DHF,CISD+Q (aug-)pVTZ 0.006 8 022

AE,DHF,CCSD(T) (aug-)pVTZ 0.007 0.034 10 11 0.8 027

“PP+CPP and PP+SO+CPP denote one- and two-component HF
calculations using large and small basis sets, respectively. For the one-
component large basis set case SO contributions derived from the small
basis set correlated calculations were added after the correlation treat-
ment. For comparison AIMP WB results of Seijo'*® and fully-relativistic
AE results obtained for the DCG Hamiltonian by Visscher and co-
workers®**** are included. Data taken from Dolg.>*’

energies D, as well as the corresponding mean absolute errors
(m.a.e.). The CG-AIMPs reproduce the AE DKH values very
well, although the bonding at the AIMP CG level is slightly too
weak, that is, the bond lengths are typically slightly too long,
whereas the vibrational constants and binding energies are
usually somewhat too low.

Although a comparison as compiled in Table 16 already gives a
good impression about the accuracy of the tested method, it is
not fully satisfactory. On one hand it is not obvious if the
remaining errors are due to the limited basis sets used at the
AIMP CG level, on the other hand one is also interested in the
correlated results and a comparison to experiment. Table 17
provides m.a.e. of AIMP WB results including SO corrections
at the CIDBG(SD) level. The m.a.e. in bond lengths is below
0.01 A and comparable to the one obtained in AE DHF/DC
CISD and CCSD(T) calculations,®*® however the ones in the
vibrational constants and the binding energies are more signifi-
cant. Since both the AIMP WB and the AE calculations use basis
sets of approximately pVTZ quality, one can not clearly distin-
guish between the corresponding basis set errors and errors in
the AIMP.

Fortunately, with the development of atomic natural orbital
(ANO) contracted basis sets by Almlof and Taylor® and
correlation-consistent basis sets by Dunning>*® a systematic
convergence toward and extrapolation to the complete basis
set (CBS) limit became possible. This allows more systematic
comparisons between AE and ECP schemes also at the correlated
level, and deviations can be assigned more safely to differences in
the AE and ECP Hamiltonians. In other words, one knows much
better the position on the corresponding Hamiltonian planes in
Figure 1. Of course, when comparing to experiment errors with
respect to all three axes still have to be considered. In this and the
next section we will therefore put emphasis on newer studies
which apply large uncontracted basis sets, or correlation-consis-
tent basis sets both for ECP and AE calculations.
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Figure 37. Bond lengths R, (A), vibrational constants w, (cm_l), and
binding energies D, (eV) of the halogen dimers Br,, I,, and At, from
CCSD(T) calculations using energy-consistent small-core PPs and cc-
pVXZ-PP (X =D, T, Q, 5) basis sets (filled circles and solids lines) in
comparison to AE DKH2 results obtained with cc-pVXZ-DK (X=Q, S)
basis sets (circles).*”” The experimental values were corrected for SO

effects using results from two-component PP calculations™” and are
indicated by a dotted line.
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Figure 38. Bond lengths R, (A), vibrational constants @, (cm™ "), and
binding energies D, (eV) of the bromine dimer Br, from CCSD(T) and
CCSD(T)-F12b calculations using energy-consistent small-core PPs>"’
and unpublished cc-pVXZ-F12-PP (X =D, T, Q) basis sets of Peterson.
Results of a basis set extrapolation using aug-wCVXZ-PP (X = Q, §)
basis sets are indicated by a star. Data taken from Werner et al.*>'* The
experimental values are indicated by a dotted line. D, has been corrected
for the experimental atomic SO energy splittings.

Peterson compared scalar-relativistic AE DKH2 and
MCDHE/DC+B PP results for the halogen dimers Br,, I, and
At, at the CCSD(T) level®” His results are displayed in
Figure 37, together with experimental values, which were cor-
rected for SO effects (0.002, 0.012,0.135 A, —3, =12, —41 cm '
and —0.27, —0.49, —1.06 eV for Br,, I, and At, ) taken from two-
component large-core PP calculations.>®” It can be seen that the
agreement between AE and PP values is excellent. It is also
obvious that the theoretical values approach the SO-corrected
experimental ones, however, the convergence is very slow and
even with quintuple basis sets the deviations from the experi-
mental values are bigger than the difference between the AE and
PP values. The situation is especially unpleasant for the binding
energies, which are not converged with respect to the basis set.

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480
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Figure 39. Bond lengths R, (A) and vibrational constants @, (em ™) of
the astatine dimer At, from MP2, MP2-F12, MP2-SO, and MP2-F12-
SO calculations using energy-consistent small-core PPs* and aug-cc-
pVXZ-PP (X =D, T, Q, S) basis sets (dots connected by solid/dashed
lines),**” as well as def2-XZVPP (X = T, Q) basis sets (circles).>® Data
taken from Bischoff and Klopper.>*

Very recently explicitly correlated approaches have been
extended to include PPs. Werner et al. reported CCSD(T)-
F12b calculations of Br,.*"> Their results are displayed in
Figure 38. The same SO corrections as discussed above were
applied to the experimental values. It can be seen from 38 that the
basis set dependence of the CCSD(T)-F12b results is signifi-
cantly smaller than of the CCSD(T) results. All CCSD(T)-F12b
results are relatively close to values obtained from a basis set
extrapolation using aug-wCVXZ-PP (X = Q, S) basis sets. The
deviations from the SO-corrected experimental values are lower
than 0.01 A, 3 cm ™', and 0.03 eV.

Corresponding explicitly correlated two-component calcu-
lations includin% SO effects were recently reported by Bischoft
and Klopper.®*®® Their results for At, are summarized in
Figure 39. In comparison to the CCSD(T)-F12b results of
Werner et al. for Br,, the convergence of the MP2-F12 values
seems to be slower. Although the absolute values at the MP2
level may not be very accurate, it is interesting to extract SO
contributions. These are 0.114 + 0.002 A and —36.1 +
0.3 cm ™! for aug-cc-pVXZ-PP (X = T, Q, 5) and def2-XZVPP
(X =T, Q) basis sets, whereas for aug-cc-pVDZ-PP values of
0.136 A and —39.5 cm ™" are obtained. The latter values agree
well with the corrections mentioned above from large-core
PPs.>*” The about 10% smaller corrections for the better basis
sets may be due to the small-core definition or the more
rigorous AE DHF/DC+B reference data used for the PP3%7
applied by Klopper and Bischoff.**® Another reason might be
the inclusion of the CPP, that is, core—valence correlation, in
the large core case, which increases SO splittings, whereas for
the small-core PP only valence correlation was considered.

Table 17 summarizes errors obtained with the large-core
WB adjusted PPs and CPPs"**'*® when used in scalar-
relativistic calculations (PP + CPP) with large uncontracted
AE basis sets. The agreement with experimental data is
excellent, that is, the root-mean-square errors are lower than
0.01 A for bond lengths of hydrides and dimers, about 20 and
S cm~ ' for vibrational constants of hydrides and dimers,
respectively, and at most 0.01 and 0.09 eV for binding energies
of hydrides and dimers, respectively, at the SO-corrected
CCSD(T) and ACPF level (CCSD(T)+SO, ACPF+SO).

Table 18. Electric Dipole Moment ., Static Polarizability @,
Static First-Order and Second-Order Hyperpolarizabilities
.0 and 7, Respectively, from Time-Dependent HF/DHF
Calculations Using Large-Core WB PPs,"*'*® the DKH2
Hamiltonian, and the DC Hamiltonian®>'>*

HX  method level U, o w.p y
HF TD-HF PP 0.7690 493  —4.06 257.4
DKH2 0.7668 497 —4.3S§ 276.9
TD-DHEF DC 0.7667 497 —4.35 277.0
HCl TD-HF PP 0.4885  16.78 0.49 2117.7
DKH2 04799 1695 —141 2206.4
TD-DHF DC 04794 1696 —1.30 2201
HBr TD-HF PP 03672 23.24 0.77 35713
DKH2 0.3638 2341 0.01 4214.5
TD-DHEF DC 03610 2348 —0.07 4257
HI TD-HF PP 02109  35.69 4.10 124413
PP+SO 0.2015
DKH2 02114 3537 325  11561.1
DKH2+SO 0.2020
TD-DHF DC 0.1971  35.52 3.31 9383
HAt TD-HF PP —0.0481  42.50 2.50 183319
PP+SO 0.0439
DKH2 —0.0515  41.84 216  17126.5
DKH2+SO 0.040S
TD-DHF DC 0.0621 4343 —292 18652

“Data taken from Norman et al.*** SO corrections (+SO) for the dipole
moment were obtained from two-component PP calculations®*” and
added to the scalar-relativistic PP and DKH2 values.

Upon using pVTZ basis sets in two-component HF and CISD
calculations (PP+SO+CPP) the errors increase, but are of the
same magnitude as those of fully relativistic AE DHF and
CISD calculations using the DCG Hamiltonian and pVTZ
basis sets.>**>*!

We finally turn to time-dependent HF/DHF (TD-HEF/DHF)
calculations of properties, which were reported by Norman et al.
for electric dipole moments, linear polarizabilities, and first- and
second-order hyperpolarizabilities using scalar-relativistic en-
ergy-consistent large-core PPs,"**1*® " the scalar-relativistic
DKH2 approach and the fully relativistic DHF/DC method.*"
These properties are defined as follows: the polarization of a
molecule at the microscopic level can be expanded as follows in
the presence of an external electric field F

1
w=u + YouF + EZﬁff"FjF"
J jk
1
+ gZyijk,FijFz + .. (192)
jkl
where 4 is the permanent electric dipole moment component
(i,j, k, I, .. = x, ¥, z). The experimentally measured quantities refer
to a set of laboratory axes which are related to the molecular

properties through orientational averaging. The averaged proper-
ties are the averaged dipole polarizability

1
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Figure 40. CCSD(T) s'd'® — s’d” excitation energies, electron
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Figure 41. CCSD(T) bond lengths R, (A), vibrational constants .
(em™'),and binding energies D, (eV) of Cu,, Ag,, and Au, from energy-
consistent MCDHF/DC+B small-core PP calculations without (black
bars) and with (dotted bars) correlation of the (n — 1)sp semicore
orbitals in comparison to experimental data (checked bars). Data taken
from Peterson and Puzzarini.”*

the first hyperpolarizability (assuming that the molecular z-axis is
the dipole axis)

E = 1 Z (ﬁzii + ﬂizi + ﬁiiz) (194)

Sionz

and the second hyperpolarizability
7= 15 Z (yfiii TV Vijﬁ) (195)

Lj=%Yz

Table 18 summarizes results of Norman et al. using the best basis
set for each method. The agreement with the TD-DHF reference
data is quite good for TD-HF with the PP and DKH2 Hamiltonians
in case of the electric dipole moment and the static polarizability.
If SO corrections for the scalar-relativistic PP and DKH2
approaches are included the dipole moment of AtH comes in
good agreement with the TD-DHF reference value. The results
for the hyperpolarizabilities are less satisfactory, however Nor-
man et al. mention that especially the evaluation of the first-order

Table 19. Differences in Bond Distances R, (A), Vibrational
Constants . (cm '), and Binding Energies D, (eV) of Cu,,
Ag,, and Au, of CCSD(T) Calculations Using Small-Core
Energy-Consistent MCDHF/DC+B PPs*! with
aug-cc-pwCVTZ-PP and the DKH2 Hamiltonian with
aug-cc-pwCVTZ-DK Basis Sets”

M, AR, Ao, AD,
Cu, 0.002 0.0 —0.004
0.001 —0.9 —0.007
Ag, 0.003 —0.3 —0.007
0.003 —0.9 —0.014
Au, —0.002 0.7 0.010
0.004 —1.3 —0.031

“ The first line for each molecule corresponds to the results with (n — 1)dns
correlation only, the second to the contributions of correlating the
(n — 1)sp shells. Data taken from Peterson and Puzzarini.”**

hyperpolarizability is a notoriously difficult task. It would be
interesting to see if two-component small-core PPs would yield
more favorable results.

9.5. Calibration: Transition Metals

Schwerdtfeger et al.!®? compared HF, MP2, and CCSD(T)
results for the ionization potential, electron affinity and
dipole polarizability of Au, and the spectroscopic constants
of AuH obtained with seven different scalar-relativistic
pps'¥7/109286,326,335,35% {4 AE DKH and DC data. In agreement
with the results of Lee et al.***> SO contributions were found to
be of minor importance for AuH. The authors concluded that
for a small-core PP treating 19 valence electron explicitly the
variation between AE and PP results is too small to be
significant, whereas the large-core PPs with 11 valence electrons
show sizable differences.

As arecent example for the performance of MCDHF/DC+B-
adjusted PPs for transition metals””" we consider the work of
Peterson and Puzzarini on group 11 and 12 elements and their
dimers.”®* Their results for Cu, Ag, and Au are displayed in
Figure 40. Correlation of the (n — 1)sp semicore orbitals
improves the results and leads at the CCSD(T) level to errors
with respect to SO-averaged experimental data which are below
0.1 eV in all cases, that is, for Cu, A§, Au, they amount to —0.025,
—0.090, —0.031 eV for the s'd'® — s*d’ excitation energies,
0.013,0.010, 0.015 for the electron affinity, and 0.032, 0.034, and
—0.007 eV for the ionization potential. In view of the large
differential relativistic effects and correlation effects, see Figure 5
for the excitation energies, these results are quite satisfactory.

Figure 41 summarizes spectroscopic constants for the homo-
nuclear dimers Cu,, Ag,, and Au,. The calculated CCSD(T)
bond lengths, vibrational constants and binding energies agree
better than 0.01 A, 4 cm ™!, and 0.06 eV with the experimental
values. Compared to the differential relativistic effects of Au,, that
is, about —0.31 A, 54 cm™’, and 0.38 eV in R, w,, and D,,
respectively,'® the remaining errors are acceptable.

The comparison between experimental and calculated data
depends critically on the chosen correlation method. In order to
establish the errors due to the PPs one can compare to AE results
obtained with basis sets of comparable size. Table 19 summarizes
the differences between PP and DKH2 CCSD(T) results. For all
three molecules the deviations are at most 0.004 A, 1 cm ™' and
0.03 eV, demonstrating also the excellent transferability of
the PPs.

dx.doi.org/10.1021/cr2001383 |Chem. Rev. 2012, 112, 403-480
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Figure 42. MCQDPT s'd'® — s°d’ excitation energies, electron
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mental data. Data taken from Zeng and Klobukowski.*®

Table 20. Differences in Bond Distances R, (A), Vibrational
Constants @, (cm '), and Binding Energies D, (eV) of Au, of
CASPT?2 Calculations Using Various MCPs** and the DKH3
Hamiltonian with a (30s26p18d16f)/[15s14p9d5f] Basis Set”

MCP AR, A, AD,
pdsMCP —0.026 2 0.09
spdsMCP 0.007 0 —0.04
fpdsMCP —0.045 4 0.14
sfpdsMCP —0.009 1 0.03

“Data taken from Zeng and Klobukowski.*®>

The performance of the small-core energy-consistent
MCDHF/DC+B PP for Au*®' summarized in Figures 40 and
41 and Table 19 can be compared to the one of the various
DKH3-adjusted MCPs of Zeng and Klobukowski.*”> The
authors investigated the core definition for the MCP approach
taking the Au atom as an example. Four different MCPs were
adjusted including the Ss, 4f, Sp, 5d, and 6s shells or a subset in
the valence space. Here the orbitals are ordered according to
increasing energy, whereas according to increasing (r)-values an
order 4, Ss, Sp, 5d, and 6s would result. The four derived MCPs
are named pdsMCP, spdsMCP, fpdsMCP, and sfpdsMCP,
where the included valence shells are given in energetic order.
A main conclusion was that the 4f shell despite its high energy can
be attributed to the core, whereas the Ss shell despite the lower
energy should be included in the valence space. The spdsMCP,
corresponding to a separation of core and valence shells accord-
ing to their spatial extensions, was found to provide the best
accuracy. The slightly inferior performance of the sfpdsMCP was
attributed to a less accurate fit, since the same number of
parameters was used as for the spdsMCP. The fpdsMCP,
corresponding to a separation of core and valence shells accord-
ing to their energies, performs significantly worse than the
spdsMCP, whereas the omittance of Ss from the valence space
leads to smaller, but noticeable errors.

Figure 42 displays s'd'® — s°d” excitation energies, electron
affinities and ionization potentials obtained at the multiconfi-
guration quasidegenerate perturbation theory (MCQDPT)

level. The agreement with experimental data is not satisfactory,
probably partly because of the lack of g functions in the
(30s26p18d16f)/[15s14p9dSf] basis set, as well as the applied
correlation method. However, the agreement with the AE DKH3
reference data is quite good. For the preferred spdsMCP the
corresponding errors in the excitation energies, electron aflinities
and ionization potentials are quite small, that is, 0.001, —0.030,
and —0.004 eV, respectively.

Table 20 summarizes for the spectroscopic constants of Au,
the errors of MCP complete active space second-order perturba-
tion theory (CASPT2) values with respect to AE DKH3 results.
In case of the preferred choice spdsMCP these are very similar to
those of the PP discussed above, which uses the same small core.

10. SELECTED APPLICATIONS

In this final sections, we turn to selected applications for
lanthanides and actinides, as well as superheavy elements, that
is, fields that are most challenging and also most rewarding for
the application of ECPs. In the following sections, we do not
provide details of experimental data used for comparison. For a
corresponding discussion, as well as the references, we refer the
reader to the publications containing the theoretical work
discussed here.

10.1. Lanthanides and Actinides

Quantum chemical calculations of lanthanide (Ln) and
actinide (An) systems are a very challenging area of computa-
tional chemistry,”%>%317332#18,34275%5 The tywo major obstacles
for accurate electronic structure calculations for f transition
metals are the same as for d transition metals, i.e., usually large
and often counteracting electron correlation and relativistic
effects, cf. Figure 6. Quite frequently applied in atomic and
molecular calculations are the shape-consistent large-core
lanthanide (46 core electrons) PPs of Cundari and Stevens,*”*
and the Stuttgart—Colofgne energy-consistent small-core
lanthanide'*® and actinide'* (32 and 60 core electrons) PPs.
For the latter, systematic generalized contracted pVXZ (X =D,
T,Q) basis sets,”*>*** as well as segmented contracted pVQZ
basis sets’*>**® exist. In addition for both lanthanides and
actinides f-in-core PPs with valence basis sets for molecular as
well as solid-state calculations have been derived,'*!5%15115332#
With the exception of U, highly accurate MCDHF/DC+B-ad-
justed PPs are still missing>

On the side of AE calculations ANO basis sets for use in
DKH2 calculations have been derived by Roos et al. for
lanthanides and actinides.’****” These basis sets are certainly
useful for investigations at the AE level and, with some care, can
also be used for calibration studies, although they are certainly
not close to the basis set limit. The same applies to four-
component calculations, which are still very scarce for lanthanide
and actinide molecules, especially for cases with an open f shell,
see a (short) list of available results provided by Styszynski.>**
Another difficulty for theoretical methods is the scarcity or even
absence of suitable accurate experimental information, which
could be used to calibrate the theoretical models. For example,
for the actinide ions essentially only the first ionization potentials
have been measured. Higher ionization potentials, which would
be ideal to calibrate a method with respect to its ability to
accurately describe changes in the 5f occupation number, are still
missing (cf. NIST atomic spectra database®*®).

Because of the above situation there are essentially no systema-
tic calibration studies as discussed for the main group and
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Table 21. Selected CCSD(T) Results for IP; and IP, (in eV)
of the Lanthanides”

Ln f g h i extr. exp.

La 1P, 18.81 1898 19.06 19.09 19.14 19.18

La 1P, 49.68 4991 49.99 50.02 50.07 49.95£0.06
Ce 1P, 3493 3611 3642 36.53 3674 36.76 £0.01
Eu 1P, 2379 2455 2478 2489 2502 2492+0.10
Gd 1P, 43.55 4434 4459 4471 4486 4440=£0.12
Yb 1P, 2395 2458 2476 2488 2500 25.05+£0.03
Lu 1P, 20.78 20.87 20.89 2090 20.92 20.96

Lu 1P, 4426 44.87 45.07 4521 4533 4525+£0.03
m.ae. a0.84 0.28 0.17 0.13 0.11

“ Large uncontracted basis sets up to the f, g, h, and i symmetry were
applied. Extrapolated (extr.) values are compared to experimental (exp.)
ones. Data taken from Cao and Dolg.>*

Table 22. Calculated Term Energies (cm™") of the J Levels
Belonging to the U*" 5f* Configuration”

CG/WB AIMP DC+B PP DC+B PP
A=09 AEDC IHFSCC IHFSCC AE DCB
J SESS SOCI  FSCC std. unc. XIHESCC  exp.
4 0 0 0 0 0 0
2 4062 4084 3959 4233 4202 4161
S 6320 6233 5902 5890 6070 6137
3 8925 9025 8612 8825 8974 8984
4 9276 9585 9196 9264 9404 9434
6 11831 11711 11178 11144 11420 11514
2 17044 16554 15998 16601 16554 16465
4 16581 16929 16181 16221 16630 16656
0 18159 17471 17025 17960 17837 17128
1 21044 20145 19529 20420 20441 19819
6 23278 22581 22594 22441 22534 22276
2 25663 24979 24042 24799 24991 24653
0 43352 46230 43783 45329 45611 43614
m.a.e. 500 403 318 420 357 0
m.a.d. 510 203 567 162 0 357

“CG/WB AIMP spin-free state shifted spin-orbit CI,555 AE/DC Fock-
space coupled cluster,**® energy-consistent MCDHF/DC+B-adjusted
PP intermediate Hamiltonian Fock-space coupled cluster (IHFSCC)*>"”
for standard (std.) and uncontracted (unc.) basis, AE DCB extrapolated
extrapolated intermediate Hamiltonian Fock-space coupled cluster
(XIHFSCC)**® results in comparison to experimental data. Mean
absolute errors (m.a.e.) refer to the experimental values (last but one
line) and AE DCB XIHFSCC results (last line).

transition elements, where the same DFT/WFT approach is used
at the PP and AE level. More frequent are studies in which a
combination of PP and DFT/WEFT approaches are compared to
experimental data or to results from relativistic AE calculations
using different DFT/WFT approaches.*'* Nevertheless, the quan-
tum chemical investigations of lanthanide and actinide systems is
currently a very active and steadily growing field of research, as is
manifested by the review articles cited above. A substantial part of
the investigations has been carried out with ECPs. The following
sections summarize a selection of these studies, where we put the
focus mainly on the performance of the ECPs, not so much on the
results and insights obtained for the individual systems.

10.1.1. Atoms. The first to fourth ionization potentials
(IP,—IP,) of lanthanides and actinides have been calculated to
test the reliability of the small-core PPs, "% ag well as the
corresponding valence basis sets.>”> *°>** For lanthanides
mean absolute errors (m.a.e.) of less than 0.35 eV compared to
experimental data were found at the averaged coupled-pair
functional (ACPF) level.>>® The errors are more due to the
electron correlation treatment than to the PPs, that is, CCSD(T)
calculations for a few single-reference cases led to a significant
improvement over the ACPF results with a m.a.e. of ~0.1 eV,>*
see Table 21. The slow improvement of the m.a.e. with respect to
the extension of the basis sets illustrates a major problem of ab
initio calculations, especially in view of the presently not feasible
molecular calculations, using such large basis sets.

It also has to be noted that experimental data for f elements is
not always accurate enough for calibration, for example, the result
of 44.86 eV for IP, of Gd obtained in the above study*° differed
significantly from the experimental value of 44.0 £ 0.7 eV. A newer
experimental value of 44.40 &= 0.12 eV yielding a better agreement
was published shortly after the theoretical study.>*" On the basis of
the results for lanthanides the accuracy of calculated higher
actinides ionization potentials is estimated to be better than
+39.%*°5> The results obtained with PPs and standard basis sets
are for IP; of equivalent quality to those from AE calculations using
the DKH2 Hamiltonian and ANO basis sets.>****’

The most accurate four-component theoretical approach
currently available for atoms is the DC(-B) intermediate Hamiltonian
Fock-space coupled cluster approach (DC(B)-IHFSCC)
[553], which is unique in describing dynamic and nondynamic
correlation energies at relatively low computational cost. Un-
fortunately the applicability is very limited, since at present this
approach can only deal with one or two electrons/holes outside/
inside a closed shell. By combining it with the newly developed
MCDHF+B energy-consistent pseudopotential for uranium, as
well as the corresponding standard basis sets, the U (5f'
subconfiguration) spin—orbit splitting as well as the fine-struc-
ture of the U*" (5 subconfiguration) spectrum have been
calculated,®* of. Table 22 for U* 5f. The mean absolute
deviations (m.a.d.) with respect to experimental data amount
to 0 and 318 cm ' for the U and the U*" fine-structure levels,
respectively. Compared to the AE results obtained by a extra-
polated DCB-IHFSCC method with a 32p24d21f12g10h9i basis
set and a frozen [Kr]-core®>* the corresponding m.a.d. amount to
13 and 567 cm ™~ ',>** respectively. When the PP is combined with
an MRCI approach, which is also suitable for molecular calcula-
tions and more general orbital occupations, the m.a.d. are
increased to 183 and 918 cm !, respectively.***

Barandiardn and Seijo>> also calculated the fine-structure of
U*" 5 applying a WB AIMP (1s—5d core), a spin-free state
shifted SOCI**” and a basis set that is also applied for studies of
U** defects in crystals. Comparing to experimental data the m.a.d.
of their best result amounts to 180 cm ™. One reason for this very
good agreement is, at least in part, a parameter fitting, that is, a
scaling factor of 0.9 was applied to the WB SO operator and the P
and 'I states were shifted downward by 1000 cm . Without these
corrections the m.a.d. amounts to 1284 cm™ ', which is quite
comparable to the above-discussed PP SOCI result. Including
only the empirical scaling of the WB SO operator, but no shifts of
LS states, a m.a.e. of 500 cm™ ' is obtained. In view of the much
larger computational effort in the AE DCB XIHFSCC approach
and the prospect to use the SFSS SOCI also in larger molecules or
for impurities in crystals, this is a very encouraging result.
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Table 23. Bond Lengths R, (A), Vibrational Constants o, (em™'),and Bindin%
from Energy-Consistent Pseudopotential (PP),"**** Model Potential (MP),

Energies D, (eV) of ThO in the '>* Ground State
! and Ab Initio Model Potential (AIMP/CG,

AIMP/DKH3)"#”*** Calculations in Comparison to Experimental Data®

R, @
PP(WB,30), SCF 1.829/ 943/
AIMP(CG,12), SCF 1.819/ 956/
AIMP(DKH3,12), SCF 1.833/ 945/
AIMP(DKH3,22), SCF 1.832/ 951/
PP(WB,30), SCF 1.817/1.817 956/955
MP(DKH2,36), CASSCF 1.928/ 847/
PP(WB,30), CASSCF 1.882/ 876/
AIMP(CG,12), CASSCF 1.886/ 865/
AIMP(DKH3,12), CASSCF 1.879/ 856/
AIMP(DKH3,22), CASSCF 1.878/ 861/
MP (no-pair,36), MRCI+Q_ 1.923/ 852/
EC-PP(WB,30), MRCI+Q_ 1.845/ 902/
EC-PP(WB,30), CCSD(T) 1.839/1.84S 898/891
Exp. 1.840 896

D. Dy ref
6.07/ 149
5.99/ 448
5.96/ 187
5.96/ 187
6.26/6.24 304

561
8.92/ 149
9.15/ 448
9.14/ 187
9.14/ 187
7.85/ 561
8.87/ 8.45/ 149
9.58/9.38 9.16/8.96 304

9.00 £ 0.09

8.87£0.15

8.7940.13

“The values are without/with counterpoise correction of the basis set superposition error. The label and number given in parentheses behind the
acronyms PP, MP, and AIMP denote the AE method used to derive the reference data and the number of valence electrons for the Th valence-only
model Hamiltonian. The zero-point energy and SO contributions were subtracted for the evaluation of the dissociation energy Dy (V).

10.1.2. Diatomic Molecules. For many lanthanide dia-
tomics, especially the monoxides, highly accurate spectroscopic
data exists. The analysis however is often very difficult for systems
with several f electrons due to the extreme complexit;r of the
spectra, as well as of the underlying electronic structure.”'® Here
quantum chemical calculations can be very helpful to interpret
the experimental results, and on the other hand a sufficient
amount of reliable experimental data is highly welcome to
calibrate computational methods. For actinide diatomics the
situation is much less satisfactory, since experimental data is
more scarce.

Spectroscopic and theoretical studies of lanthanide monoxides
were recently reviewed by Andrews and co-workers.>>” The assign-
ment for the ground state of YbO to Q2 =07 or Q2 =0, as well as
the configurational assignment to a 4f'*0°0°7* or 4f 0’0’0’ mr*
leading (super)configuration is still an open problem for
theoreticians.”> A possible explanation of the observed bond
length, which is consistent with 43, and vibrational frequency,
which speaks for 4f* could be a configurational mixing for the 0~
states of each configuration. It should be noted that the experi-
mentally determined energy difference between the gresumably 0"
ground and 0~ excited state is only ~0.1 eV,>*® whereas the
differential relativistic and correlation effects amount to more than
4 and 2 eV, respectively (see ref 558). The entries for IP; of Yb,
linking Yb™* 4f* and Yb>* 4f"3, in Table 21 reveal most likely at
least a (MR)CCSD(T) calculation including up to i functions in
the Yb basis set and taking SO interactions into account would be
required to come to a reliable ab initio answer. Unfortunately, such
calculations are currently not feasible. It should be noted that the
agreement between experiment and theory applying the same PP
and similar correlation methods is excellent for YbH and YbE.>*
Reasonable results in agreement with experiment are also obtained
for EuO, where a 4f 0’ o?o*m* 82 ground state was found. 3!

In an ionic picture CeO has a ground state superconfiguration
Ce®* 4f' 6s' 0>, which gives rise to 8 AS states (WSILA,®)

467

and 16 corresponding 2 levels, which are experimentally well
investigated. The system was thus used as a benchmark
molecule for, e.g., an energy-consistent small-core Ce PP a
CG-adjusted MP,**° a CG/WB-adjusted AIMP** and a
DKH3-adjusted MP.'®® The heavier homologue ThO has a
closed shell '=* ground state, that is, no occupied 5f orbital, and
was also a target of several studies, cf. Table 23. A DKH2-
adjusted Th MP was applied by Marian et al.,*®" whereas WB/
CG- and DKH3-adjusted AIMPs were used by Seijo et al.***
and Tsuchiya et al,'®® respectively. Hirao and co-workers
applied two DKH3-adjusted AIMPs with different core defini-
tions and an explicit treatment of relativity."’® ThO was also
studied with an energy-consistent Th PP by Kiichle et al.'*’ and
Cao and Dolg.*** For both molecules it is quite difficult to
compare the performance of the ECPs, since significant differ-
ences exist in the applied basis sets and especially the correla-
tion treatments. At the SCF level all results for ThO agree
within ~0.02 A, ~15 cm ™", and 0.3 eV. At the CASSCF level
the bond is significantly lengthened and strengthened. The
agreement for the results of the more recent studies is still quite
good. Highly correlated calculations were only performed for
the energy-consistent PP. At the CCSD(T) level, the calculated
values (R, = 1.845 A, w, = 891 cmfl, Dy = 8.96 eV)304 agree
very well with experimental data (R, = 1.840 A, w. = 896 cm Y,
Do = 9.00 % 0.09 eV).

A recent study by Averkiev et al. compares small-core energy-
consistent PP DFT results to relativistic AE DKH2 CASPT2 and
X2C CCSD(T) data for the first and second ionization potential
of selected actinide monoxides AnO (An = Th, Pa, U, Np, Py,
Am, Cm).**> The mean unsigned errors (m.u.e.) of the SO-
corrected results with respect to experimental data for all 14 IPs
are 0.29 and 0.36 eV at the DKH2 CASPT?2 and X2C CCSD(T)
level, respectively. Concerning the density functionals used with
PPs the M06, MOS, B3LYP and MPW3LYP parametrizations
worked best with m.u.e. of 0.40, 0.41, 0.42 and 0.44, respectively,
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whereas PW91 exhibited a larger m.u.e. of 0.56 eV. The average
of the experimental error bars is 0.39 eV.

For lanthanide fluorides LnF (Ln = Nd, Eu, Gd, Yb) the
calculated results by using energy-consistent small-core PPs have
shown that the Ln-F bond is of ionic rather than covalent
character and that the lanthanide 4f orbitals contribute only little
to chemical bonding.**® Moreover, the calculated spectroscopic
constants using PPs combined with DFT calculations were found
to be generally in good agreement with the CCSD(T) results.*®*
Mosyagin and co-workers performed a GRECP study of the
hyperfine, P-odd and P,T-odd constants of YbF in its 3, 1
ground state and derived an estimate for the effective electric field
on the unpaired electron, which is a necessary quantity to link the
measured P,T-odd frequency shift with the electric dipole
moment of the electron.”®*

For lanthanide and actinide monohydrides, very little experi-
mental information is available. The calculated spectroscopic
constants for YboH****% and LuH>* either using DFT or ab
initio methods exhibit errors in comparison to experimental data
of at most 0.019 A for bond distances, 0.06 eV for binding
energies, and 7 cm™ ! for vibrational frequencies. For LaH, EuH,
GdH, YbH, LuH and AcH the theoretical results using PPs
combined with ab initio methods, that is, CCSD(T) for LaH and
LuH, CI for EuH and GdH, agree well with the scalar-relativistic
four-component DFT results, except for the bindin§ energies
which tend to be larger by up to 1 €V in DET.***** An
MCDHF/DC+B-adjusted small-core PP for U (see also
sections 9.1 and 9.2) was applied in a study of the ground and
the low-lying excited states of UH. A * I/, ground state was
predicted and the obtained spectroscopic constants agree very
well with results calculated at the AE DKH2 level, > see Table 24.
The agreement between AE and PP results was found to be
slightly improved comspared to older studies with a correspond-
ing WB-adjusted PP.> ©

The dimers Ln, (Ln = La, Ce, and Pr) were found to have the
same valence subconfiguration ngﬂu4 (with 4f subconfigurations
4f°, 4f', 4f for La, Ce, Pr), forming triple—bonds.567 For Gd, a
ground state configuration with 18 unpaired electrons
(4 74f70g20u1(7 '7,7) was theoretically predicted by using a Gd
4f’-in-core PP§68 and later confirmed by an ESR experiment.**’
The molecular constants were subsequently improved in a study
of Gd high-spin dimers GdX (X=H, N, O, F, P, S, Cl, Gd), and a
O ground state was established.””® Gd, has most likely the
highest spin-multiplicity of a diatomic molecule. Because of the
stronger destabilization of the 5d orbitals of Lu compared to La
the occupation of the 77 orbitals in Lu, is less favorable than in La,
and thus a 4f144fl40320u27'[u2 s+ ground state with only two
electrons in 77 orbitals results. The calculated molecular constants
for Ln, (Ln = La, Ce, Pr, Gd, Lu)567 show a satisfactory
agreement with experimental data, except for the vibrational
frequencies of La,, Ce,, and Pr,, where ~40 cm™ ' too low values
are calculated. The disagreement might at least be partly related
to Ar-matrix shifts.

The van der Waals interatomic potentials for YbHe, TmHe,
Yb,, and TmYDb were reported by Buchachenko et al. using small-
core PPs and large ANO basis sets at the AQCC and CCSD(T)
level.>”" The isotropic interactions of Yb and Tm atoms with He
are found to be very weak and similar. It was thus suggested that
the isotropic interactions are similar for all members of the LnHe
family and close to those computed for YbHe. The isotropic
interactions of the TmYb and Yb, dimers are also very similar.

This indicates the possibility of sympathetic cooling of open-shell

Table 24. Bond Lengths R, (A), Vibrational Constants o,
(cm™ '), and Adiabatic Term Energies T, (eV) of UH from
MRCI Calculations with Spin-Orbit Coupling (State Inter-
action Approach)”®

R. . T.

no. Q PP AE PP AE PP AE

1 4.5 2.025 2.021 1505 1511 0.000 0.000
2 3.5 2.026 2.021 1499 1504 0.025 0.020
3 2.5 2.024 2.020 1496 1502 0.042 0.039
4 15 2.025 2.020 1494 1502 0.054 0.053
S 0.5 2.027 2.021 1494 1500 0.067 0.066

“ AE DKH2+BP-SO results are compared to small-core energy-consis-
tent PP results.*”

Ln atoms in an ultracold gas of Yb, if such similarity extends to
other LnYb systems.””

Besides the calculations with ECPs treating the f shell ex-
plicitly, many lanthanide diatomics were studied with 4f-in-core
PPs, that is, LnH, LnO, and LnF,*%320:322559 Ln2,20’323’568 as well
as LnHe*.3”> These calculations, which were the first wave
function-based correlated calculations on lanthanide systems,
provided also the insight, that, for example, for LaO, an ~1 eV
increase of the binding energy and a by 0.1 A shorter bond length
results from an active participation of the La 4f orbitals in
bonding.*® Along the lanthanide series the 4f shell becomes
more compact and energetically less accessible, so that the active
4f participation in bonding gets weaker. The 4f-in-core approach
was also combined with ligand field theory in order to get
information about the individual states arising from the open
4f shell.*®®

10.1.3. Polyatomic Compounds. A large number of ECP
applications for lanthanides and actinides has been published
since the short review of Pyykkd in 1987.°* We limit the
discussion in this section to studies published during the past
decade and refer the reader to one of the older previous reviews
for a discussion of work performed until 2000,%33%#18543544
Nevertheless the present section can only provide a selection of
the available studies.

A clluantitative knowledge of lanthanide (Ln™) and actinide
(An"™) hydration is important for the chemical separation of
Ln™ and An" in the treatment of nuclear waste, as well as for
other problems such as the investigation of the stability of
medically applied Ln™ complexes such a Gd"™ or Lu™ tex-
aphyrins in aqueous solution (vide infra). The accurate model-
ing of solvent effects however is a quite difficult task, since
explicitly including a larger number solvent molecules may
easily exceed the computational resources at hand, whereas
using a continuum model to include them implicitly may be too
crude. In a 2008 review Schreckenbach and Shamov presented a
modified coordinate system of approximations for actinide
quantum chemistry, that is, in Figure 1 the axes for one- and
many-electron basis were combined to one axis for the chosen
model chemistry, which certainly includes besides wave func-
tion-based approaches also DFT, the axis for the chosen
relativistic approximate Hamiltonian and a new axis for model-
ing the solvent (condensed phase) effects.>** In tests of solva-
tion models of the actinyl aquo complexes [AnO,(OH,)s]""
(An = U, Np, Pu and n = 1, 2) Schreckenbach and Shamov
found that continuum solvation models are reliable as long as
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the first coordination sphere is included explicitly and that no
clear advantage results from the costly explicit treatment of the
second coordination sphere. It was also stated that the inclusion
of SO effects is necessary to get a correct trend in An(VI)/
An(V) reduction potentials. Further it was stressed that a small-
core PP approach (e.g., 32 valence electrons for U) is superior
to a large-core (e.g., 14 valence electrons for U) approach. The
latter view is shared by other researchers,””*”*but not all. Iché-
Tarrat and Marsden agree that, for example, the small-core U
PP gives good thermochemical results even when the oxidation
state changes; however, they found the large-core U PP still
provide good answers for cases where the oxidation state does
not change.””

A review of computational studies of actinide chemistry in
gas phase and solution was published in 2005 by Vallet et al.*”>
The authors emphasize that for many cases computationally
costly high accuracy is not required, since systematic errors
often remain constant and therefore cancel, for example, when
comparing geometries of different isomers or when computing
reaction energies. Various solvent models, the effects of basis
sets and correlation treatment as well as SO coupling found in
previous studies of uranyl UO,>* and related systems are
summarized and discussed. The importance to use small-core
PPs and to treat the first coordination sphere explicitly was
underlined.

Wiebke et al. used An Sf-in-core PPs at the DFT and MP2 level
to calculate structures, bindin§ energies, entropies and Gibbs free
energies of hydration for An'" hydration complexes An"'(OHS,),,
(An=Ac—Lr,h=7,8,9) and An"(OH,),,_,-H,O (h=8,9).5°
The COSMO approach was used to model the bulk water. The
Gibbs free energies of hydration for h = 7, 8, and 9 were found to
agree with about 60 kJ/mol (~2%) at the DFT/BP86 level,
where a preferred coordination number (CN) of 8 has been
found. The well-known tendency of DFT to yield too low CNs is
not paralleled at the MP2 level, where preferred CNs of 9 and 8
were obtained for Ac''—Md"™ and No™—Lr"" in closer agree-
ment with experimental evidence. The explicit modeling of H,O
in the second coordination sphere was found to be important to
get the An—O distances for H,O in the first coordination sphere
in agreement with experiment. This finding contrasts those of
Vallet et al,’” as well as Schreckenbach and Shamov,>* for
uranyl and its derivatives.

A corresponding study for Ln"" hydration complexes (Ln =
La—Lu) was performed by Ciupka et al,,>’” who applied also an
improved thermodynamic cycle to evaluate the Gibbs free
energies of hydration. Again the CNs obtained at the DFT level
are too small, whereas SCS-MP2 yields a preferred CN of 9 for
La™—Sm™ and 8 for Eu™—Lu™ in good agreement with
experimental evidence.””® The m.a.d. of the calculated Gibbs
free energies of hydration from two sets of experimental
data®”**" are 36 kJ mol ' (1.1%) and 45 kJ mol ' (1.3%),
respectively. Although an agreement with experimental data of
~19% might appear to be an excellent result, errors of this size are
still too large to arrive at reliable answers in quantum chemical
investigations of the separation of An"" from Ln"" in liquid—
liquid extraction processes.581

For some simple cases enerigy-consistent f-in-valence PPs
were also applied, that is, L™ 382583 Celll S8 Gqls8s ang
Lu'™ 382586 yhere the 4f occupations are 0, 1, 7, and 14,
respectively. Similar to the studies mentioned above, it was
found for Ce"" and Lu™ that the explicit inclusion of the second

solvation shell improves the structural agreement in compar-
ison to experimental data,***%

The separation of An(III) from Ln(IIl) by a liquid—liquid
extraction process is one of the important steps in the treatment
of the nuclear waste produced by nuclear power plants. Purified
Cyanex301 (bis(2,4,4-trimethylpentyl)dithiophospinic acid,
HBTMPDTP denoted as HL) was found to have very hiégh
separation factor for Eu(III) and Am(III)/Cm(III) (>5000).>*
Theoretical studies of this separation with 4f- and Sf-in-core
PPs have been reported recently.>®' It was shown that the
neutral complexes ML;, where L acts as a bidentate ligand and
the metal cation is coordinated by six S atoms, are most likely
stable extraction complexes. Alternative extraction complexes,
for example, HML,, have also been studied. The calculated
changes of the Gibbs free energies in the extraction reaction
M** + 3HL — ML, + 3H" agree with the experimentally found
thermodynamical priority for Am®" and Cm*" over Eu’".
Moreover the ionic metal—ligand dissociation energies of the
extraction complexes ML; show that, although EuL; is the most
stable comglex in the gas phase, it is the least stable in aqueous
solutions.>®’

Complexes of lanthanide(1II) ions with texaphyrins, that is,
expanded porphyrins with 5 coordinating N atoms, play an
important role in medical treatments, for example, X-ray radia-
tion therapy, photodynamic therapy for oncology, photoangio-
plasty, and the light-based treatment of age-related macular
degeneration. Quantum chemical studies for the structure,
stability and spectra of these systems were performed with Ln
4f-in-core PPs at the DFT level.>*® Related studies using Ln 4f-
and An Sf-in-core PPs of Ln(III) (Ln = La, Gd, Lu) and An(III)
(An = Ac, Cm, Lr) motexafins (M-Motex**, M = Ln, An) have
shown that Ac-Motex™" is the most stable complex and should be
the best candidate for e)ggerimentalists to get stabilization of an
An’" jon by motexafin.®

The lanthanide trihalides are a popular test set and have been
studied with various ECPs, that is, energy-consistent PPs, 3?0759
shape-consistent PPs,*?**?15%05%% 45" el as model core
potentials.*”” Good agreement is observed between f-in-core
and f-in-valence PP results, when treated at the same level of
theory.’”® Tsukamoto and co-workers found that dynamic
electron correlation is indispensable for obtaining reliable bond
distances, whereas static electron correlation has only little
influence.”®” For DyX; (X = Cl, Br, I), it has been found
that 4f subshell does not influence the geometry of the mono-
mers, but obviously affects their dimers (DyX3), (X = C|,
Br, 1).590591594 According to the calculations, DyX; (X = Br, I)
probably forms both planar and pyramidal DyXj; units in an inert
matrix, leading to the appearance of two symmetric stretching
frequencies observed by the experimentalists.””>** Similarly,
nearby Cs, and Dy, structures were found for LaF; in Ar,, clusters
(n = 1-21) at the MP2 level by Lanza®®® using the shape-
consistent La PP of Stevens et al.>*

Figure 43 compares the mean absolute errors in calculated
lanthanide halogen distances with respect to two recommended
sets of recent PP**>**° and MP*” calculations with AE DKH2
data>** 4fin-core energy-consistent PP+CPP'#0288323324 1o
sults are found overall to be of the same quality as the DKH2
results for both recommended sets of bond distances. The 4f-in-
valence energy-consistent PPs'**°*% perform also quite well,
although the comparison to the other results is not fully justified
for the heavier halogens, since in contrast to the 4f-in-core
calculations,®” no PPs were included on the halogen atoms,>”*
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Figure 43. Mean absolute errors in calculated bond lengths of
lanthanide trihalides LnX; (X=Ce— Lu) from all-electron second-
order Douglas—Kroll—Hess (AE DKH2) DFT/PBEO0,*** 4f-in-core
pseudopotential and core polarization potential (LPP+CPP) DFT/
PBEO,>”* energy-consistent small-core pseudopotential (SPP) DFT/
PBE0°?? and model core potential (MCP) CASPT2*7 calculations in
comparison to two sets of recommended values (Kovacs and Konings,
2004; Hargittai, 1988).

and sli§ht1y too long bond lengths result. The MCP CASPT2
results™ agree much better with the older recommended set of
bond lengths, whereas the PPs and AE DKH2 approaches agree
well with both sets. We note that the recommended values do not
all correspond to gas phase R, values and thus in a strict sense do
not allow a direct comparison to the calculated values. However,
an individual discussion of the 56 molecules in the test set is not
within the scope of this review.

Figure 44 compares the calculated atomization energies of AE
DKH2%* and 4f-in-core energy-consistent PP*** calculations to
experimental values. It is well-known that SO effects on bond
energies are substantial for heavier halogens, and by no means
negligible as stated by Pantazis and Neese.””> Including corre-
sponding atomic corrections from experimental data the results
of both AE DKH2 and PP approaches yield roughly the same
agreement with the experimental values and a constant quality
for all halogens.>”

A large number ECP studies were reported for small actinide
complexes with electronegative ligands, such as halides and
pseudohalides. Most of these studies have focused on uranium,
that is, AnF,, (An = Pu—No for n = 2; An = Ac—Lr for n = 3,
An = Th—Cfforn =4, An =Pa—Am forn =35, An = U—Am for
n = 6),150'151’153 AnFq (An _ Th—Np),599 Tth(4—n)+ (n _
1—8),°° PaX; (X = F, C1),°°' UF4,>"* UF,, (n =S, 6),*"° UX,
(X=F,Cl;n=1-6),">UF, (n=4,5,6),° UXs and UO,X,
(X = F, Cl, Br, 1),°°* MF4, MO3, MO,F,, MO,(OH), (M = U,
Np, Pu),®” UE,X, (X = H, F, Cl, Cl, CN, NC, NCO, OCN,
NCS, SCN),°® and UF,Cls_, (n = 1—6).52%%

Batista et al. investigated structural properties and thermo-
chemistry of UFs and UF; at the HF and DFT level using the
DKH3 AE approach as well as a small-core and a large-core U
PP.**® For the structural properties both large- and small-core
PP performed equally well and yielded good agreement with
experimental data at the DFT level, but for the UFs — UF; + F
bond dissociation energy only the DKH3 AE and the small-core
PP approach performed well, whereas the large-core PP results
were off by more than 50%. The combination of hybrid density
functionals and small-core U PP was recommended for both the
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Figure 44. Same as Figure 43, but for atomization energies in compar-
ison to experimental values (Myers, 1977). Atomic spin—orbit correc-
tions for the halogens have been applied for the right half of the graph.

evaluation of structural properties and thermochemistry. Using
this approach Batista et al. computed for the first time bond
dissociation energies for the whole series UX, (X=F, Cl; n =
1—6) and obtained good agreement with experiment.602 Using
a small-core U PP Pyykko and co-workers investigated the
preference of U to bond to F, O, and Cl rather than to
pseudohalides.®®® In this study the U—F bond in UF was
found to have some multiple-bond character, approaching at a
theoretical limit a bond order of 1.5. Straka and Kaupp,™** as
well as Schreckenbach,>*® demonstrated that a small-core PP
for Uis able to yield 'F chemical shifts for UF,Clg_, (n=1-6)
complexes in good agreement with relativistic AE reference
data, whereas earlier studies using a large-core U PP failed
completely.

Despite the more diffuse actinide Sf shell in comparison to
the compact lanthanide 4f shell, and the frequently reported
failures of large-core PPs for U treating the Sf shell explicitly
(vide supra), the f-in-core PP approach developed for lantha-
nides two decades ago,'*®'32%832332% apnears to work also
quite well for actinides as long as the actual 5f occupation is
consistent with the one modeled by the PP. The Sf-in-core
approach is relatively robust if the Sf occupation is slightly
higher than the one modeled by the PP, but it breaks down
when it is lower."**"3"'%3 Interestingly, the approach does even
not fail when treating actinocenes, where both 6d and 5f orbitals
are involved in metal-ring bonding.*"”

A substantial amount of quantum chemical calculations of
actinide systems deals with actinyls, especially the uranyl ion
UO,>*, which is central to the chemistry of uranium.®®® A
recent review of Denning summarizes both experimental and
theoretical work on actinyls.’”” Here we only report on some
more recent studies. Vlaisavljevich, Gagliardi, and Burns have
performed calculations to understand the formation of nano-
scale cage clusters based on uranyl ions.’'® It was shown that the
inherent bending of the configuration, i.e, bending of the
U—0,—U dihedral angle, caused by a covalent interaction
along the U—Operoxo bonds encourages curvature and cage
cluster formation.®'® Gas phase U* and UOj} carbonyl cations
have been recently produced and studied.’’ The calculations
established the fully coordinated ions are U(CO)g and UO,(CO)5,
with Dy, square antiprism and Dg;, pentagonal bipyr-
amid structures.®'’ Averkiev et al. compared SO-corrected
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results for the first and second ionization potentials as well as
the bond energies of the neutral molecules as well as the mono-
and dication for actinide dioxides AnO, (An = Th, Pa, U, Np,
Pu, Am, Cm) from small-core energy-consistent PP DFT
calculations and relativistic AE DKH2 CASPT2 and X2C
CCSD(T) calculations.*® The mean unsigned errors (m.u.e.)
for the first and second ionization potentials were 0.53 and
0.65 eV at the AE DKH2 CASPT2 and X2C CCSD(T) level,
respectively. In the PP studies the B3LYP, MPW3LYP, PW91,
MO06 and MOS functionals performed best with errors of 0.52,
0.52, 0.54, 0.55, and 0.56 eV, respectively. The experimental
error bars are 045 eV on average. Concerning the binding
energies m.u.e. of 15 and 13 kcal/mol were found for AE DKH2
CASPT2 and X2C CCSD(T), respectively. The m.u.e. of the
best PP results amount to 10, 10, 11, and 12 kcal/mol for
B3LYP, MPW3LYP, M06, and MOS, respectively, whereas
PWO1 performs clearly worse with a m.u.e. of 25 kcal/mol.

A major advantage of ECPs is the reduction of computational
effort comparing to AE methods, which makes ab initio and DFT
studies of more complicated complexes containing f elements
feasible. Numerous publications using ECPs for quite complex
systems containinZ%f elements have appeared during the last three
years. 1 &S8V6107627 Mot of these calculations were performed in
cooperation with experimental studies to clarify the structures,
spectra as well as reaction mechanisms. For the complexes
[(CsMes)U(u-1), 15N, [(CsMes)U(u-1),]50, [(CsMes),U(u-N)-
U(u-N3)(CsMes),]4, [(CsMes),UN3(u-N3) 13, [(CoFs)3sBNU-
(N[Me]Ph);], and [(CsMes)U(us-E)]s with U in a formal
oxidation state III or IV the theoretical predictions of the
uranium main group element bond distances were found to be
very valuable, since from the experimental X-ray data one cannot
differentiate main group elements as N from O in the presence of
one or more metals as large as uranium.®>® Moreover, all above-
mentioned polymetallic uranium complexes are bonded ionically
with azide, nitride, or oxide except for [(CgFs);BNU(N-
[Me]Ph)], which is a monouranium complex with uranium in
formal oxidation state V1.%*

Tassell and Kaltsoyannis studied the covalency in AnCp,
(An = Th—Cm).®*® They found that the An—Cp bonding is
very ionic. The large 5f contributions to molecular orbitals in
compounds of the middle actinides should not be taken as
evidence of significant covalency (in the sense of appreciable
overlap between metal and ligand orbitals) and the extent of
f-based covalency is larger in U complexes than anywhere else in
the f block. A similar conclusion was reached by Guillaumont
based on the studies on Ln(III) (Ln = La, Ce, Nd) and An(III)
(An=U, Pu, Am, and Cm) complexes with tridentate nitrogen
ligands. It was found that the direct participation of 5f orbitals in
bonding is significant only for U.%*®

10.1.4. Solids. The theoretical studies using methods origi-
nating from solids state physics and applying plane-wave expan-
sion are not included here. In the last five years, electronic spectra
of f-element ions doped in crystals have attracted a lot of
attention of theoreticians.**”***~%* For lanthanides most stud-
ies have focused on La5*6% (Ce,629/632633636637 54641 and
Yb,634639638-640642 B actinides, mainly crystals containing
89630631633 o puS30 were studied. Recently the ab initio
model potential (AIMP) and embedding method was improved
for embedded cluster calculations of ionic solids and applications
to three oxides were reported, that is, the cubic perovskite
CeAlOj; and the CeO, and UQO, hosts with fluorite structure.’
The improvement consists of a new calculation of the embedding

term that represents the Pauli repulsions between the embedded
cluster and its environment, under a criterion of consistency of
ground state structures with respect to the size of the embedded
clusters.®*

10.2. Superheavy Elements

The superheavy elements (SHE) are considered to be those
that follow the last actinide element 103 (Lawrencium, Lr). The
SHE are an ideal playground for heavy-element quantum che-
mists, since relativistic effects are extremely large and thus their
properties may be rather different from their lighter congeners in
the same groups. Relativistic effects in SHE have been reviewed
by Schwerdtfeger and Seth.°** Several pioneering high-level ab
initio calculations on the electronic structures and properties of
compounds of elements 111—114 were performed with
PPs. 203116457648 Gince it is expected that the top of the island
of stability could be located at the nuclide with proton number
Z = 114 and neutron number N = 184, most attention has been
paid to elements 112 (E112) and 114 (E114)270390391,649-652
Han and co-workers found first that due to SO effects the bond
lengths for E113-H are decreased, but increased for E117-H.%Y
Moreover, the single-bond radii of E111—E114 were found to be
smaller than of their 6p analogues Au, Hg, Ti, and Pb, whereas
the elements E115—E118 are clearly larger than for Bi, Po, At,
and Rn.®>* For more applications, the reader is referred to recent
review articles published in 2009 and 2010 by Pershina.®*"*%*

11. CONCLUSIONS AND OUTLOOK

The effective core potential (ECP) method, invented inde-
pendently by Hellmann and Gombas around 1935, is almost as
old as quantum mechanics. Lines of methodological improve-
ments and applications in molecular quantum chemistry and
solid state physics can be traced back to the early work of Preuss
in 1955, and Phillips and Kleinman in 1959, respectively. In both
fields the ECP approach changed from an initially semiempirical
approach to an ab initio or at least first-principles method.
Important steps in the ECP development in the quantum
chemistry and solid state physics communities were often taken
independently, but at similar times, e.g., the development of the
shape-consistent and norm-conserving pseudopotential (PP)
formalisms.

In solid state physics density functional theory PP calculations
performed with plane-wave basis sets are nowadays a routine
tool, as evidenced, for example, by the several thousand citations
each of the popular PP sets accumulated so far. In quantum
chemistry both the model potential (MP) and the PP approach
are routinely used, the latter much more frequently. Besides
computational savings a major motivation was the simple implicit
inclusion of relativistic contributions and the resulting possibility
to study relativistic effects in (larger) molecular systems by
comparing results obtained with relativistically and nonrelativis-
tically parametrized ECPs. Initially such studies were performed
with large-core ECPs and often with quite small basis sets.
Because of the lack of competitive alternative approaches the
ECP method became a workhorse in relativistic quantum
chemistry during the 1980s. By far, more than a thousand
applications were performed with the PPs of each of the most
popular sets so far. The advances both in computer technology
and quantum chemistry codes, the development of more ready to
use relativistic all-electron approaches as computational alter-
native and as tools for calibration, as well as the generation of
systematic series of basis sets allowing also extrapolation to the
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complete basis set limit, caused in the last two decades a change
of preference toward small-core ECPs with significantly im-
proved accuracy. Modern PPs of both the shape-consistent and
energy-consistent variety can reach an accuracy which allows to
include besides the leading Dirac relativity also small relativistic
contributions such as the Breit interaction or the finite nucleus
into the adjustment, whereas the development of MPs here has to
catch up. The inclusion of contributions from quantum electro-
dynamics, which are probably already nonnegligible for Au, are as
well on the agenda.

One may ask what remains to be done except for filling some
gaps of the available ECPs and corresponding basis sets, i.e., what
can still be improved concerning the MP and PP methods?
Certainly, if an accuracy significantly better than 0.01 eV in
energy differences between low-lying electronic states, ionization
potentials and electron affinities is the target for PP approaches,
the simple formalism with a semilocal (or nonlocal) one-electron
valence-only model Hamiltonian and an unchanged Coulomb
interaction might not be sufficient. Modified two-electron terms
are suggested by the generalized Phillips—Kleinman equation
and could be considered in improved valence-only model
Hamiltonians. It has to be kept in mind, however, that highly
correlated calculations of atoms and diatomics are nowadays not
any more the main area of PP applications, but rather the
calculations of medium sized to large systems treated with cheap
(local) correlation schemes or even density functional theory.
On one hand the PP approach should stay computationally
simple enough to allow such calculations, including the evalua-
tion of energy gradients, on the other hand the approximate
treatments of electron—electron interactions in connection with
the limited basis sets applicable for larger systems may lead to
errors much larger than those of the existing PPs. Thus one may
ask if such higher accuracy is really useful for practical applica-
tions. This question is also justified for the further development
of MPs, where a modeling of the best available many-electron
Hamiltonian, that is, the Dirac—Coulomb—Breit Hamiltonian, is
still missing.

(Dirac—)Hartree—Fock-adjusted small-core PPs can also be
used in density functional calculations, whereas large-core PPs
are frequently found to fail. It would be interesting to see if the
situation for quantum chemistry density functional studies can be
improved by adding nonlinear core corrections, since these were
found to be successful in solid state PP calculations.

Core—valence correlation, described by (I- or lj-dependent)
core-polarization potentials has so far also not been exploited
systematically. Especially for small-core ECPs remaining non-
negligible core—valence correlation contributions, for example,
4f correlation contributions for Hg 20-valence-electron ECPs,
could be evaluated using core-polarization potentials. However,
the use of core-polarization potentials is not common, since the
corresponding integral routines are only available in a few
quantum chemistry codes and corresponding energy gradients
are still missing.

When going beyond the ECP variants discussed here, that is,
the PP and MP approaches, the latter is much more advanced
when describing the environments consisting of groups of
atoms/ions, for example, the environment of embedded clusters
investigated in solid state calculations. Although one can imagine
to generate also PPs for an ensemble of atoms/ions, a general
prescription how to do this in practice has not been given so far.

Summing up, although many scientists who made important
contributions to the ECP approach are by now retired (or tired),

the ECP approach itself at the age of 75 is still doing well, will
continue to be a useful tool for computational chemists for some
time and possibly will also undergo further methodological
developments to become more accurate and efficient.
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